

2019 HAZELTON WASTE MANAGEMENT FACILITY ANNUAL REPORT

June 2020

Prepared for:

British Columbia Ministry of Environment & Climate Change Strategy EnvAuthorizationsReporting@gov.bc.ca

Prepared by:

Regional District of Kitimat-Stikine Suite 300 - 4545 Lazelle Avenue Terrace, BC V8G 4E1

Hazelton Waste Management Facility Overview

The Hazelton Waste Management Facility (Hazelton WMF) is owned and operated by the Regional District of Kitimat-Stikine (Regional District or RDKS). It is located approximately 4 km east of the District of New Hazelton at 82 Birch Road, access is from Highway 16.

The Hazelton WMF is responsible for the management of municipal solid and liquid waste generated from commercial and residential sources greater Hazelton area, which includes the community of South Hazelton east to Witset, and north up the Kispiox Valley. Waste collected at the Kitwanga Transfer Station is consolidated and hauled to the Hazelton WMF for landfilling. The following communities utilize the Kitwanga Transfer Station; Cedarvale, Kitwanga, Gitsegukla, Gitwangak, and Gitanyow. The Hazelton WMF is operated in accordance with the Regional District Kitimat-Stikine Solid Waste Management Plan (1995).

Landfill operations are regulated by the Ministry of Environment and Climate Change Strategy's Operation Certificate MR-17226, most recently updated in May 2020, and conducted in accordance with the Design, Operations, and Closure Plan for Hazelton Waste Management Facility, authored by Sperling Hanson and Associates (2019).

This annual report will follow criteria outlined in the amended Operational Certificate that was issued the October 2019.

Figure 1. Location of the Hazelton Waste Management Facility

The Hazelton WMF currently contains septage receiving lagoons, a landfill, an equipment storage building, Z-wall for public drop off of garbage, and U-Bays for residential drop-off of tires and scrap metal including large appliances and propane tanks. The leachate treatment system is near completion, it includes an equalization pond, a series of wetlands and final effluent discharge to a phytoremediation orchard.

The details of the Facility water quality monitoring program, including groundwater, surface water, and leachate results will be discussed in a document prepared by Sperling Hansen Associates and can be found in Appendix A.

Table of Contents

Haz	lazelton Waste Management Facility Overview1			
Tab	Table of Contents			
Figu	res and	I Tables	3	
1.0	Intr	oduction4	ł	
2.0	Was	ste Discharge4	ŀ	
	2.1	Municipal Solid Waste (Garbage)5	5	
	2.1.1	Septage5	;	
	2.1.2	Effluent Discharged to Phytoremediation or from Wetland #4 ϵ	5	
3.0	Dive	erted Materials6	5	
	3.1	Metals7	7	
	3.2	Cardboard7	7	
	3.3	Tires7	7	
	3.4	Clean Wood7	7	
4.0	Wile	dlife Occurrences and Observations7	7	
5.0	0 Environmental Monitoring Report8			
6.0	Sum	۲mary٤	3	

Figures and Tables

Figure 1.	Location of the Hazelton Waste Management Facility1
Table 1.	Waste Discharge Qualities for 20195

1.0 Introduction

This annual report covers the period from January 1 to December 31, 2019 and has been prepared to fulfill the requirements of the Hazelton Landfill Operational Certificate MR-17226. The Operational Certificate (OC) was issued by the Ministry of Environment and Climate Change Strategy on May 30, 2013 and most recently amended in May 2020. This report follows criteria as outline in the October 2019 amended version of the OC.

The OC authorizes the discharge of municipal solid and liquid wastes and outlines the criteria for environmental and human protection at the landfill. This report meets the requirements outlined in Section (12.2) of the Operational Certificate by providing the following information:

- Total volume or tonnage of waste discharged to the landfill in 2019;
- Total volume or tonnage of waste recycled and diverted in 2019;
- Total volume of sewage waste discharged to septage facility in 2019;
- Volume of effluent discharged to each the phytoremediation and Wetland #4;
- Occurrences or observations of wildlife attempting to access the facility; and
- The results and evaluation of all monitoring programs undertaken in 2019 (Sperling Hansen Associates, Appendix A).

2.0 Waste Discharge

The Hazelton Waste Management Facility serves the Hazelton area and receives garbage consolidated at the Kitwanga Transfer Station. Some communities that are served by the Hazelton facility offer residential curbside collection; the facility also provides disposal and diversion services to many residents and businesses who self-haul their garbage. Metal (including scrap, propane tanks, and large appliances), tires, and cardboard (commercial and residential) are collected and stored at the facility for recycling. Clean wood is segregated and burned on site as outline in the OC.

The OC permits the discharge of municipal solid waste, municipal liquid waste, asbestos, and contaminated soil (with contaminants in concentrations less than "hazardous waste" as defined by the *Hazardous Waste Regulation*). Some types of municipal solid waste are deemed "Controlled Waste" by RDKS bylaw 688, which includes; animal carcasses (over 50 kg), loads of construction and demolition debris or land clearing debris greater than 5m³, contaminated soils, clean soils, broken asphalt and concrete up to 30cm in diameter, and waste ash from incinerators.

The annual totals for 2019 of each type of permitted waste discharged at the Hazelton Landfill are shown in Table 1. Additional details about each of these materials is included below.

Table 1. Waste Discharge Qualities for 2019

Material	2019 Quantity (tonnes)	
Waste Discharge*		
Garbage	3430	
Demolition	428.1	
Hauled from Kitwanga	745.2	
Land Clearing Waste	65.6	
Diverted Wastes		
Tires		11**
Metal		451**
Cardboard		68**
Clean wood		29**
Total Landfilled	4,668.9	
Total Materials Diverted		559

Note: *This value is based on pre-compaction volume (m³) data collected from October to December 2018, inclusive, extrapolated to a 12-month data set. Volume data was converted to tonnage using the U.S. Environmental Protection Agencies *Volume to Weight Conversion Factors* (2016) value of 175kg/m³ for uncompacted mixed municipal solid waste.

** Value is an estimate

2.1 Municipal Solid Waste (Garbage)

Garbage is defined as discharged materials not including; Prohibited Waste (hazardous or radioactive waste, slaughter waste, explosive or highly combustible materials, auto hulks, Extended Producer Responsibility (EPR) materials, organic materials originating from work camps, and non-EPR tires), Restricted Waste (metal, EPR-covered tires, and cardboard), and clean wood.

In 2019, 4,668.9 tonnes of garbage was deposited in the landfill.

2.1.1 Septage

Septage is defined as septic tank pumpage and treated sewage sludge, but does not include Other Sewage Wastes (wastewater, sewage or slurry, including catch basins, oil water separators, shop floor drains). Septage is disposed in the Hazelton Septage receiving lagoons. The facility has two lagoons available for disposal. The liquid fraction is treated in the leachate treatment system. Dewatered solids are buried in the landfill.

The volume of septage was not tracked during 2019.

2.1.2 Effluent Discharged to Phytoremediation or from Wetland #4

The Hazelton Waste Management Facility Phase 2 is almost near construction completion. Two possible locations are authorized for discharge, the phytoremediation orchard and via a weir from Wetland #4. The leachate (collected from the new landfill and the closed Phase I landfill) treatment process begins in the equalization pond, then runs though a serious of three wetlands, then a sand filter prior to discharge to the phytoremediation orchard. Wetland #3 is equipment with an overflow, which goes to Wetland #4, Wetland #4 also collects run-off from the phytoremediation orchard.

Figure 2 Hazelton Wetland #2

3.0 Diverted Materials

The Hazelton Landfill restricts the disposal of recyclable materials that have other disposal options available. The District of New Hazelton provides residents with biweekly collection of unlimited quantities of recycling. Residents of other communities may access recycling depots run by industryfunded programs for no fee. Commercial waste generators are responsible for making their own arrangements to have some restricted materials collected separately and taken for processing.

The RDKS provides drop-off facilities for restricted materials that are not already managed by other operators in the service area. These include metals, cardboard (primarily for commercial customers, although open to all site users) and tires.

3.1 Metals

Metals collected at the Hazelton Waste Management facility are stockpiled and sold as scrap to a Terrace-based metal salvage recycler. Ozone depleting substances are removed from all pertinent materials prior to collection by scrap metal recycler.

In 2019, a total 451 tonnes of metal was collected and diverted at the Hazelton Waste Management Facility.

3.2 Cardboard

To ensure there is an avenue for diversion of institutional and commercial cardboard in the Hazelton Area the Regional District provides cardboard bins on-site which are emptied weekly under contract for recycling.

During 2019, 68 tonnes of carboard was collected for recycling from the Hazelton Waste Management Facility.

3.3 Tires

Tires are an Extended Producer Responsibility material in British Columbia, managed by the Tire Stewardship of BC. Since there are no tire depots conveniently located in the Hazelton area, the RDKS collects and stockpiles tires, which are then collected by the Stewardship.

During 2019, approximately 11 tonnes of tires were collected for recycling through the Tire Stewardship of BC at the Hazelton Waste Management Facility.

3.4 Clean Wood

Clean wood waste is considered any wood product that has not been treated or painted. Clean wood is segregated and burned as prescribed in the Operational Certificate.

In 2019, 29 tonnes total of clean wood waste was collected and diverted.

4.0 Wildlife Occurrences and Observations

The Hazelton Facility is located in an area with bears, wolves, coyotes, several species of birds of prey, and many other species of mammals that may attempt access to the facility. To prevent wildlife from

gaining access, the entire facility is enclosed in a fence, and the landfill area is enclosed within an electric fence.

To effectively prevent vectors from gaining access to the landfill active face, as of November 2017, the Revelstoke Iron Grizzly (RIG) is used as an alternative daily cover. It is positioned each day to cover all waste, with soil from site used as intermediate cover.

Facility operators are required to inspect the fence line weekly, testing for appropriate voltage, proper tension on fence stands, overall condition of the fence, and signs of wildlife activity. The results of the inspections are recorded on the Daily Operation Inspection Form.

There were no mammalian wildlife incidents or encounters observed during 2019 at the Hazelton Waste Management Facility. There was minimal vector activity from birds, including raptor species (bald eagles), and corvid species (crows and ravens).

5.0 Environmental Monitoring Report

Environmental monitoring for the Hazelton Waste Management Facility was conducted by a Regional District of Kitimat-Stikine Environmental Technician, following the 2013 British Columbia Field Sampling Manual published by the Ministry of Environment and Climate Change Strategy. All in-situ and laboratory data for groundwater, surface water, and leachate monitoring results has been analyzed and reviewed by Sperling Hanson Associates. The compiled data, interpretation, and recommendations can be found in Appendix A.

6.0 Summary

During 2019, 4,668.9 tonnes of total refuse including garbage, construction and demolition materials, consolidated waste from the Kitwanga Transfer Station, and controlled waste was disposed of in the Hazelton landfill. An additional 555 tonnes of material were diverted from the landfill during 2019. These materials include; 451 tonnes of metal, 11 tonnes of tires, 29 tonnes of clean wood, and 68 tonnes of cardboard. The diverted total does not include septage.

There were no mammalian wildlife occurrences at the Hazelton Waste Management Facility during 2019.

Document prepared by:

MHale

Megan Haley, P. Chem. Solid Waste Manager Regional District of Kitimat-Stikine 300 – 4545 Lazelle Avenue Terrace, BC V8G 4E1 mhaley@rdks.bc.ca Document reviewed by:

Dicole Loroie

Nicole Lavoie, B.Tech. Solid Waste Services Coordinator Regional District of Kitimat-Stikine 300 – 4545 Lazelle Avenue Terrace, BC V8G 4E1 nlavoie@rdks.bc.ca

Appendix A	Environmental Monitoring
	Report

Hazelton Waste Management Facility 2019 Annual Monitoring Report - Final -

PREPARED FOR: REGIONAL DISTRICT OF KITIMAT-STIKINE

PREPARED BY: SPERLING HANSEN ASSOCIATES

PRJ20010

Regional District of Kitimat-Stikine • Landfill Services

- Land Reclamation
- Corporate Management
- Groundwater Hydrogeology

CONFIDENTIALITY AND © COPYRIGHT

This document is for the sole use of the addressee and Sperling Hansen Associates Inc. The document contains proprietary and confidential information that shall not be reproduced in any manner or disclosed to or discussed with any other parties without the express written permission of Sperling Hansen Associates Inc. Information in the document is to be considered the intellectual property of Sperling Hansen Associates Inc. in accordance with Canadian copyright law.

This report was prepared by Sperling Hansen Associates Inc. for the account of Regional District of Kitimat-Stikine. The material in it reflects the best judgment of Sperling Hansen Associates Inc. in the light of the information available to it, at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Sperling Hansen Associates Inc. accepts no responsibility for damages, if any, suffered by third party as a result of decisions made or actions based on this report.

EXECUTIVE SUMMARY

This annual monitoring report provides a synopsis of surface water and groundwater quality at the Hazelton Waste Management Facility, with a focus on water quality observed in 2019 relative to historical trends. Sampling that occurred in 2019 followed the amended Operational Certificate (OC) 17226. 2019 marks the second year that data has been collected for the new Shallow Groundwater (SGW) wells.

There was a controlled discharge event to the Wetland #4 infiltration trench in 2019. The event started October 8, 2019, and it ceased at the end of November 2019. Prior to discharge, the OC requirements were confirmed for compliance, including LC-50 testing. Also, the Wetland #4 water quality results show lower values and frequency for exceedances when compared to those in the background water quality. This suggests that water in Wetland #4 is predominately sourced from precipitation events. Data that was not collected included visual observations of surface discharge and continuous volume of discharge. In the future, volume of discharge will be monitored with daily observations of flow through a weir. The weir was constructed and installed in 2020. However, earth filled berms were not constructed to channelize flows through the weir due to inclement weather. Completion of these works will take place during 2020.

Generally, shallow groundwater is naturally attenuated and diluted with increasing proximity from the landfill. This dynamic is observed with flows from SGW-1 and SGW-3 flowing to SGW-5 and SGW-2, respectively. Water quality at SGW-5 shows that exceedances at SGW-1 have decreased to compliant levels with the exception of cobalt and iron for BC CSR-DW criteria. However, these exceedances have been observed in background concentrations. Furthermore, leachate discharge to SGW-1 ceased in 2019. This is supported by the general trend of 2019 water quality having less and lower exceedances when compared to 2018 water quality. Thus, exceedances of BC CSR-DW criteria at SGW-5 are not considered to be caused by leachate impact. Water quality at SGW-2 shows conflicting results when compared to SGW-3. In general, water quality of key leachate indicating parameters does decrease at SGW-2 when compared to SGW-3. These varying results are believed to be impacted by swampy waters. Furthermore, BC CSR exceedances at SGW-2 of aluminum, arsenic, cobalt, iron, lithium and manganese do not correlate to the Wetland #4 discharge water quality showing no BC CSR-DW exceedances. For these reasons, SGW-2 water quality is challenging to interpret. It is recommended that the SGW wells be monitored quarterly for another year to establish baseline trends.

Downgradient groundwater quality at BH-5B showed potential evidence of leachate impact, as it showed conductivity and chloride levels (typical indicator of leachate impact) elevated above background water samples. Of importance, there were exceedances of the CSR-DW criteria for cobalt, iron, and manganese concentrations in 2019. In general, it appears water quality at BH-5B is only partially influenced by leachate impact. For instance, a key leachate indicating parameter such as ammonia followed background water quality trends. Furthermore, several of the exceedances are similar to background conditions. Lastly, additional data is required to determine the portion of contamination resulting from nearby highway operations. For these reasons, it is challenging to determine whether or not the landfill is impacting groundwater at the downstream BH-5B monitoring location.

The water in BH-03, which would intercept any flow from landfill leachate before it reached the public water well was dry during all 2019 sampling events. In previous years, there was no concern of leachate impacting this area. For this reason, the risk with this trend changing in 2019 is considered to be low.

In terms of surface water, this year SW-06 and SW-08 showed spikes in the chloride concentrations. These concentrations are not associated with landfill run-off because site run-off is completely contained on-site. At the Beaver Pond outlet, SW-05 metal exceedances are similar to the Beaver Pond inlet locations SW-06 and SW-08, and thus assumed to be naturally occurring. Further downstream at SW-07, water quality is also similar to background. Neither of the downstream surface water locations show signs of leachate impact. Lastly, SW-09 and SW-10 were not sampled during the 2019 year. It is highly recommended that sampling at each location is conducted as specified by the OC. In the case of SW-09, it is a compliance point for surface water quality.

ii

TABLE OF CONTENTS

Executive Summary	
LIST OF IN-TEXT FIGURES	
LIST OF IN-TEXT TABLES	
LIST OF APPENDICES	
1. Introduction and Scope	
2. Site Setting	
2.1 Site Topography and Drainage	
2.2 Geological and Hydrogeological Setting	
3. Water Quality Monitoring	
3.1 Field Techniques	
3.2 Quality Assurance and Quality Control	
3.3 Water Quality Sampling Background	
3.4 Water Quality Results	
3.4.1 Surface Water Monitoring Stations	
3.4.2 Treated Effluent to Wetland #4 Infiltration Trench	
3.4.3 Groundwater Monitoring Wells	
3.4.4 Shallow Ground Water Quality Results	
3.4.5 Groundwater Quality Results	
4. Discussion on Surface Water and Groundwater Quality Results	
4.1 Surface Water Quality	
4.1.1 Surface Water	
4.2 Groundwater Quality	
4.2.1 Shallow Groundwater Wells	
4.2.2 Groundwater Wells	
5. Quality Assurance and Quality Control	
6. Conclusions and Recommendations	
7. Statement of Limitations	
8. References	
Appendix A: Figures	
Appendix B: Tables	
Appendix C: Charts	
Appendix D: Operational Certificate MR-17226 for the Hazelton Regional Landfill	
Appendix E: Acute Toxicity Test Results – Wetland #4	30

LIST OF IN-TEXT FIGURES

ure 1: Hazelton Landfill Site Location 1	

LIST OF IN-TEXT TABLES

4
5
8
9
10
11
20
•

LIST OF APPENDICES

Appendix A	
Figure 2: Streams, Wetlands and flow divides in vicinity of Hazelton WMF	End of Report
Figure 3: Hazelton Monitoring Wells and Sampling Locations	End of Report
Appendix B	
Table 1: Hazelton Surface Water Quality Data	End of Report
Table 2: Hazelton Shallow Groundwater Quality Data	End of Report
Table 3: Hazelton Groundwater Quality Data	
Table 4: Wetland #4 Water Quality Data	End of Report
Table 4.1: Wetland #4 Water Volatile Organic Compounds	End of Report
Table 5: Hazelton Surface Water Quality Data QA/QC	End of Report
Table 6: Hazelton Groundwater Quality Data QA/QC	End of Report
Table 7: Wetland #4 Water Quality Data QA/QC	
Appendix C	
Chart 1: Surface Water Conductivity	End of Report
Chart 2: Surface Water Chloride	
Chart 3: Surface Water Total Aluminum	End of Report
Chart 4: Surface Water Total Manganese	
Chart 5: Surface Water Total Iron	
Chart 6: Shallow Groundwater Conductivity	End of Report
Chart 7: Shallow Groundwater Chloride	
Chart 8: Shallow Groundwater Dissolved Aluminum	End of Report
Chart 9: Shallow Groundwater Dissolved Manganese	
Chart 10: Shallow Groundwater Dissolved Iron	End of Report
Chart 11: Shallow Groundwater Hardness	End of Report
Chart 12: Groundwater Conductivity	
Chart 13: Groundwater Chloride	End of Report
Chart 14: Groundwater Ammonia	
Chart 15: Groundwater Dissolved Iron	
Chart 16: Groundwater Hardness	
Chart 17: Groundwater Dissolved Cadmium Concentrations	-
Chart 18: Groundwater Dissolved Manganese Concentrations	End of Report
Appendix D	

Operational Certificate MR-17226 for the Hazelton Regional Landfill (amended Feb 7, 2018)

Appendix E Acute Toxicity Test Results – Wetland #4

1. INTRODUCTION AND SCOPE

Sperling Hansen Associates (SHA) was retained by the Regional District of Kitimat-Stikine (RDKS) to prepare the 2019 Annual Monitoring Report for the Hazelton Waste Management Facility (WMF). This report details a review of the site conditions, and the groundwater and surface water quality monitoring results for the year of 2019.

The WMF is located at the south-west quadrant of District Lot 1574, Cassiar Land District, and is operated by the RDKS under the Operational Certificate (OC) MR-17226, amended on February 7, 2018.

The Hazelton WMF is located off Highway 16 about 3 km east of New Hazelton. The landfill is accessed by a 1 km long gravel access road that follows the historic alignment of the old Highway 16 to Smithers. The lease property is bound by Hwy 16 to the north and an existing BC Hydro power line to the south. In the past, the landfill has been operating as a natural control facility that relies on the native soils and natural attenuation capacity to protect the environment. Currently, landfill closure and expansion upgrades have been completed, and the construction of a leachate treatment system is ongoing. The leachate treatment system construction and commissioning is scheduled for completion in 2020.

Figure 1: Hazelton Landfill Site Location

1

2. SITE SETTING

2.1 Site Topography and Drainage

Surface water run-on generally flows from the east and south of the site and is diverted from the WMF by the perimeter ditch and directed to the low-lying wetlands north and west of the landfill. Surface water from the wetlands eventually forms Rossvale Creek Tributary II and, after joining other tributaries, forms Rossvale Creek. Rossvale Creek then flows into the Bulkley River. The streams, wetlands, and flow divides in the vicinity of the landfill are shown in Figure 2 (Appendix A). Surface water that is intercepted by the perimeter ditch on the east side of the site flows into the Beaver Pond which is located directly north, downgradient of the landfill. The surface water intercepted by the perimeter ditches on the west side of the site flows into Rossvale Creek where it then flows north under Highway 16 and to the Bulkley River. The surface water flow regime is described in great detail in the Design, Operations and Closure Plan (DOCP) prepared by SHA.

In general, the Hazelton WMF site redirects run-on through a perimeter ditch system, and contains any site run-off through the site stormwater management system. The perimeter ditch system can be viewed in Figure 2 (Appendix A). Site runoff is contained by on-site ditching and grading which directs these flows to the on-site wetland system area. Per OC guidelines, stormwater is now collected and treated within the lagoon system.

2.2 Geological and Hydrogeological Setting

The stratigraphy and groundwater flow of the underlying material was evaluated from a limited number of boreholes and thus is not fully understood. Figure 3 (Appendix A), shows the location of the groundwater boreholes, including three single groundwater monitoring wells (BH-01, BH-02 and BH-03) and two nested shallow and deep monitoring wells (BH-04 and BH-05). The site is comprised of dense till with occasional sandy gravel seams and boulders.

Permeability estimates range from 3.4×10^{-7} to 9.0×10^{-10} kg m/s², which SHA has determined should make a suitable secondary barrier for leachate.

The groundwater table ranges from a depth of 2 m to 57 m which may suggest that there is a perched water table close to the ground surface, and a much deeper water table, as the water table at BH-03 indicates. It is believed that shallow groundwater (perched water table) flows in a north-westerly direction away from potential receivers including Waterfall Creek and the New Hazelton drinking wells to the southwest of the landfill (Figure 3); however, any deep groundwater migrating from the landfill in a south westerly direction would be intercepted by BH-03, therefore any leachate impact would be confirmed. The deep groundwater flow system has been intersected by only one well (BH-03), therefore, the direction of groundwater flow at the site cannot be determined. Low permeability soil was encountered in the soil samples from the deep and shallow bore holes, which helps reduce the risks associated with the migration of groundwater pollutants as described in SHA's 2018 DOCP Report.

2

3. WATER QUALITY MONITORING

3.1 Field Techniques

The 2019 monitoring program followed the monitoring program outlined in the amended OC. As in previous years, the water quality monitoring in 2019 was conducted by RDKS personnel. Monitoring locations are shown in Figure 3 (Appendix A).

The methods used to develop and sample each monitoring well and surface water station are outlined within the British Columbia Field Sampling Manual for Continuous Monitoring and the Collection of Air, Air Emissions, Water, Wastewater, Soil, Sediment and Biological Samples (BC 2013)".

3.2 Quality Assurance and Quality Control

The OC 17226 stipulates that the operational certificate holder is required to conduct a Quality Assurance and Control Program to determine the acceptability of data required by the OC 17226 and Section 2(d) of the Environmental Data Quality Assurance Regulation. The OC 17226 stipulates the terms of the quality assurance program under Section 13.5.4 of the permit (Appendix D).

As part of the program the operational certificate holder must report the results of their field duplicate in terms of the degree of variation as the relative percent difference. The calculation of the relative percent difference is provided below for reference:

$$RPD = \frac{D1 - D2}{\frac{D1 + D2}{2}} X \ 100\%$$

Where:

RPD = Relative Percent Difference

D1 = Measured value of the first duplicate

D2 = Measured value of the second duplicate

3.3 Water Quality Sampling Background

The amended OC specifies groundwater and surface water sampling locations as compliance points for specific water quality criteria. As per the amended OC, the groundwater water quality results were compared to the "Contaminated Sites Regulation Schedule 3.2¹ Drinking Water Standards" (CSR-DW), recently updated in 2019. The OC states that select groundwater wells SGW-2, SGW-4, SGW-5, BH-03, and BH-5B should be in compliance with the CSR-DW. In the case compliance is not achieved at these sample points, recirculation of the leachate is required. Regarding surface water, the updated OC specifies analytic results at SW-09 must be compliant with BCWQG-AL. In the case compliance is not achieved at this sample point, the Surface Water Quality Exceedance Plan.

In addition, the analytical results from all the sample locations have been compared to other working water quality criteria. These criteria include the "British Columbia Approved Water Quality Guidelines Criteria" (BCWQG) last updated in March 2018, for both Drinking Water (DW) and Aquatic Life (AW)

¹ CSR standards have been updated and Schedule 3.2 replaced the redacted Schedule 6

Guidelines. Following our standard procedure, parameters not listed in the Criteria were compared to benchmark (working) guidelines approved by the Ministry. These working guidelines are entitled "A Compendium of Working Water Quality Guidelines for British Columbia". With regards to groundwater, exceedances of AW guidelines (highlighted in blue in the tables) are a regulatory concern only if impacted groundwater reaches surface water. This would be the case if contaminated groundwater is not adequately diluted before reaching a surface water body. However, it is unlikely that impacted groundwater will reach surface waters at the Hazelton Landfill; therefore, exceedances of AW guidelines are noted for discussion and reference purposes only.

Complete water quality results for groundwater and surface water are summarized in Tables 1, 2, 3, and 4 (Appendix B). Some parameter guidelines are dependent upon hardness or pH which was taken into account when determining if there was an exceedance.

It should be noted that the BC WQG and BC CSR standards were updated in 2018 and 2019, respectively. As such, the applicable data was compared to the most recent criteria revisions. Historical exceedances of past criteria remain highlighted in the water quality tables.

3.4 Water Quality Results

Landfill leachate typically has elevated concentrations of several indicator parameters. Conductivity is a parameter indicative of the total amount of dissolved minerals in a water sample and higher conductivity levels (>500 μ S/cm) are often indicative of leachate impact. Chloride is also used as a leachate indicator at municipal landfills since chlorine is a common constituent of materials disposed of in municipal solid waste. Chloride has low affinity to soil or other matter meaning that it remains dissolved in solution after it enters a water system. Raw leachate from municipal landfills typically has very high chloride concentrations that typically occur in the range of 1,000 mg/l to 3,000 mg/l. Chloride concentrations typically decrease as the leachate mixes with the groundwater and gets diluted. Ammonia is another indicator of landfill leachate impact.

3.4.1 Surface Water Monitoring Stations

The surface water monitoring schedule as per the amended OC is shown below in Table 3-1.

Location	Parameters	Frequency
SW-01	Lab:	Minimum Annually ⁴ and once
SW-02	total metals, chloride, fluoride,	during spring, summer, fall if
SW-05	sulphate, hardness, ammonia,	discharging during these
SW-06	nitrate, nitrite, COD, BOD, pH	seasons
SW-07	Field:	Minimum annually ³ and once
SW-08	Conductivity, temperature,	during spring, summer, fall if
SW-09 ³	turbidity, flow rate, pH,	discharging during these
SW-10	dissolved oxygen	seasons

 Table 3-1: Surface Water Monitoring Schedule as per the amended OC

³ SW-09 as near to property boundary as possible but at a location where discernible flow begins in ephemeral creek drainage.

⁴ Annual sample should be consistent year to year, preferably taken in fall.

Monitoring locations SW-09 and SW-10 were not sampled in 2019 because they were dry.

A brief description of each sampling location is presented in Table 3-2. Charts 1 to 5, at the end of the report, show surface water quality trends, and Figure 3 depicts the location of the monitoring sites.

Monitoring	UTM	Description	2019 Sampling Notes
Locations	Coordinates		
	(+/- 5 m)		
SW-01	593039.945 E	South Surface Water Monitoring Station:	Somulad November 10
	6121908.659 N	Measures background concentrations of inflowing surface	Sampled November 19, 2019
		water from off site. It is upstream of landfill	2019
SW-02	593239.518 E	Southeast Surface Water Monitoring Station:	Sampled Aug 13, 2019
	6122034.517 N	Measures background concentrations of inflowing surface	and November 19, 2019
		water from off site. It is upstream of landfill	and November 19, 2019
SW-03	592818.141 E	Leachate seep:	No longer a sampling
	6122443.381 N	Measures raw leachate collected from the side slopes of the	location
		landfill.	location
SW-04	592783.492 E	Log Weir:	
	6122484.465 N	Measures surface water quality at the outlet of a wetland	No longer a sampling
		which directly receives flows from SW-03. Flows then	location
		converge with Rossvale Creek Tributary II.	
SW-05	592835.423 E	Beaver Pond Outlet:	Sampled Aug 13, 2019
	6122608.111 N	Downstream of landfill. Flows converge with Rossvale Creek	and November 19, 2019
		Tributary II.	
SW-06	593046.194 E	Highway Inlet to Beaver Pond:	Sampled Aug 13, 2019
	6122745.85 N	Measures water on the south side of the highway, entering the	and November 19, 2019
		inlet of Beaver Pond.	
SW-07	591675.005 E	On Rossvale Creek Tributary II above the downstream road	
	6123069.601 N	crossing culvert:	Sampled Aug 13, 2019
		Measures Surface water flows that converge from SW-05 and	and November 19, 2019
		SW-04 to form Rossvale Creek Tributary II.	
SW-08	593090.039 E	Upgradient of landfill:	Sampled Aug 13, 2019
	6122786.348 N	Measures background water quality entering Beaver Pond.	and November 19, 2019
SW-09	592180.986 E	Downstream on Rossvale Creek	Dry in 2019
	6123775.729 N		51, m 2017
SW-10	N/A	Downstream of BH-03	Dry in 2019
			Diy 111 2019

 Table 3-2: Description of Surface Water Sampling Locations

3.4.1.1 SW-01 and SW-02

Sampling locations SW-01 and SW-02, located at the south and south-east corners of the landfill property, were both sampled on November 19th, 2019. SW-02 was also sampled on August 13, 2019. Surface water flows are from off-site sources which allow the samples at these locations to be representative of background concentrations.

As in the past, there were exceedances for metals of the BC WQG AW and DW at both locations during 2019. Specifically, aluminum, chromium, copper, iron, manganese, and phosphorus were in exceedance of either criteria. In general, total metal concentrations at SW-01 and SW-02 were similar to previous sampling events.

The field pH at SW-02 was acidic with a pH reading of 5.6. This value is out of range of both the AW and DW criteria. SW-02 field conductivity was recorded as 88.8 μ S/cm. This low conductivity value is representative of naturally occurring water with conductivity less than 200 μ S/cm that is impacted by metals naturally mobilized due to acidic conditions.

3.4.1.2 SW-03

Sampling location SW-03 is no longer an active surface water sampling location due to the Environmental Upgrades Project. As described in previous Hazelton Monitoring Reports, historic water quality at SW-03 is the most representative of raw leachate that is slightly diluted from surface runoff.

3.4.1.3 SW-04 Log Weir

Sampling location SW-04 is no longer an active surface water sampling location because of redirection of leachate flow, resulting from the Environmental Upgrades Project. As described in previous Hazelton Monitoring Reports, historic water quality data at this location is representative of partially diluted and attenuated leachate in close proximity to the SW-03 leachate seep.

3.4.1.4 SW-05 Beaver Pond Outlet

The SW-05 sampling location is located at the outlet of the Beaver Pond which is north of the Hazelton WMF. The Beaver Pond receives surface water flow from two main areas. Firstly, run-off from a ditch that flows along the north side of Highway 16 enters the beaver pond from the north. Secondly, surface water flows from the run-on ditches bordering the east side of the Hazelton WMF (the site is bisected by the entrance road).

Field readings at this location indicate that the water is acidic (6.4 pH) and out of range of the AW and DW criteria. Field conductivity was recorded as 201.6 μ S/cm which is on the high end of the range of naturally occurring water with conductivity less than 200 μ S/cm.

SW-05 was sampled once in August 2019 and the sample exceeded the AW and DW guidelines for aluminum (AW only), iron, manganese (DW and AQ), and phosphorus. As this sampling location no longer receives runoff from the landfill, the exceedances at this location imply that there are exceedances in background concentrations entering the pond. Furthermore, historic exceedances of cadmium and chromium have not been observed since 2017, the year prior to the Environmental Upgrades. However, total metals results for cadmium may not be an exceedance because the BCWQG limits are for dissolved cadmium.

3.4.1.5 SW-06

The SW-06 sampling location is located south of Highway 16 at the inlet to the Beaver Pond. Flows originate from a culvert that flows under Highway 16 and are sampled downstream of SW-08. In general, exceedances at this location are similar to SW-08.

Iron and phosphorus concentrations exceeded DW guidelines. Aluminum concentrations exceeded the AW criteria only during the November sampling event. Lastly, during the August sampling event, sodium exceeded the DW criteria (332 mg/L), and chloride exceeded the AW and DW criteria (634 mg/L)

Field readings at this location indicate that water is acidic (6.5 pH) and out of range of the DW criteria. Field conductivity at this location was elevated during the August sampling event and was recorded as 2306 μ S/cm. In comparison, past conductivities recorded at this location typically range from 120 – 206 μ S/cm, with an elevated value of 531 μ S/cm during the May 2018 event. The elevated conductivity at this location could be due to runoff from the highway. Elevated conductivity levels were also observed at SW-08 (1229 μ S/cm).

3.4.1.6 SW-07

The SW-07 sampling location is located on Rossvale Creek Tributary II above the downstream road crossing culvert near Hwy 16. Surface water flows originate from the flow from SW-05, which converges to form Rossvale Creek Tributary II. This location represents water concentrations downstream of the Beaver Pond.

Aluminum and Chromium exceeded the AW criteria at the 2019 sampling event. Phosphorus exceeded the DW criteria. Iron exceeded the AW and DW criteria. In general, water quality at this location has improved compared to years prior to 2016.

The pH at this location is slightly basic (7.6 pH) and is compliant with both the AW and DW criteria. Conductivity at this location is low and was recorded as 126 μ S/cm which is within the conductivity range of naturally occurring water (less than 200 μ S/cm). This sample shows a decrease in conductivity when compared to SW-05.

3.4.1.7 SW-08 Highway 16 East Culvert

The water sample for SW-08 is collected from a culvert that passes underneath Highway 16. Runoff from the road and the road side ditch make up the majority of the flow in the stream. This sampling location is upstream of the Hazelton WMF.

During the August sampling event, iron and phosphorous exceeded both the DW and AW guidelines. These values decreased during the November sampling event with iron only exceeding the DW criteria and phosphorous results being below detection limits (the detection limit is above the DW criteria). Lastly, aluminum exceeded the AW criteria during the November sampling event. The exceedances noted at this location are likely related to highway run-off.

The field pH at this location is acidic at 6.4 pH. Conductivity was elevated with a result of 1229 µS/cm.

3.4.2 Treated Effluent to Wetland #4 Infiltration Trench

The treated effluent to Wetland #4 infiltration trench monitoring schedule as per the amended OC is shown below in Table 3-3.

7

Location	Parameters	Frequency
E309786 Treated Leachate at Wetland #4 Outlet	Lab: total metals, alkalinity, chloride, fluoride, sulphate, hardness, ammonia, nitrate, nitrite, total organic carbon, orthophosphorous, COD, BOD, VOC ⁵ pH <u>Field:</u> Conductivity, temperature, DO, turbidity, volume (flow measurement), visual ⁶	Lab/Field:Once prior to first discharge event of the year (spring) and once per summer and fall. Monthly if discharging at any time during the other monthsVolume: Continuous during dischargeVisual: Transverse area between Wetland #4 Infiltration Trench and SW-09 twice per week during any period of discharge to identify any surface breakouts of discharge
	<u>Acute Toxicity:</u> Daphnia magna	Acute Toxicity: Once prior to start of each distinct continuous discharge event or at least once per spring, summer, and fall during discharge, whichever is more frequent

 Table 3-3: Treated Effluent to Wetland #4 Infiltration Trench

Wetland #4 is located on the west side of the landfill as seen in Figure 3. During 2019, a controlled discharge event started October 8, 2019, and it ended during freezing conditions at the end of November 2019. Prior to discharge, the OC requirements were confirmed for compliance, as shown in Table 4: Wetland #4 Water Quality Data. Surface water samples were collected from the surface of Wetland #4 from July 22, 2019 to November 12, 2019. Sampling frequency was conducted as per section 11.2 of the amended OC.

Data that was not collected included visual observations of surface discharge and continuous volume of discharge. In the future, volume of discharge will be monitored with daily observations of flow through a weir. Weir construction was completed in the spring of 2020.

⁵ One time sample of VOCs for background levels, to be taken during first sampling event 2018

⁶ Visual inspection to detect surfacing of effluent between Wetland #4 Infiltration Trench and SW-09. If surface flow of effluent is detected, then the discharge must cease and the director must be notified within 24 hours

3.4.2.1 Wetland #4

In general, all water quality results were compliant with the Amended OC Discharge criteria, during the discharge event. For discussion and reference purposes, samples from Wetland #4 have also been compared to the BCWQG-DW and BCWQG-AW. There were elevated levels of total organic carbon (TOC), ammonia and chloride at this location. Only TOC and Ammonia (only for the September 2019 sampling event) exceeded the BCWQG-DW.

There were also various exceedances of the BCWQG-DW and AW for metals such as arsenic, iron, manganese and phosphorus. These metal exceedances were predominately observed during the July 2019 sampling events. For the remaining 2019 sampling events, only iron, manganese and phosphorous exceeded the BCWQG-DW. However, the observed levels are consistent with surface water background values. Furthermore, these results show fewer exceedances in water quality when compared to the September 2018 sample that was influenced by accidental leachate discharge to pond #4. Elevated levels of metals observed during 2018 that are absent in 2019 include boron, chromium and sodium. This improvement in 2019 when compared to 2018 may be attributed to the sources of flow into Wetland #4 being predominantly rainwater.

Water quality results at this location show some leachate impact which is to be expected given that leachate was mistakenly pumped to this location without undergoing treatment during 2018. However, the water quality in Wetland #4 appears to have much fewer exceedances then background surface water at SW-01 and SW-02. Also, LC-50 results show that an LC-50 dose would be greater than 100% of the solution. For these reasons, Wetland #4 water quality is likely the result of significant influences from precipitation inputs to Wetland #4.

3.4.3 Groundwater Monitoring Wells

The groundwater monitoring well network at the Hazelton WMF consists of groundwater wells and shallow groundwater (SGW) wells. The groundwater monitoring schedule as per the amended OC is shown in Table 3-3.

Location	Parameters	Frequency
BH-01	Lab:	Quarterly \rightarrow Annually ⁸
BH-02	Dissolved metals, alkalinity	ν,
BH-03	chloride, fluoride, sulphate	2,
BH-4B	hardness, ammonia, nitrate	2,
BH-5B	nitrite, TOC, COD, VOCs ⁷ , pH	[
SGW-1	Field:	Monthly \rightarrow Quarterly ⁶
SGW-2	Conductivity, temperature	2,
SGW-3	water elevation ⁹	
SGW-4		

Table 3-4: Groundwater Monitoring	g Schedule as per Amended OC
-----------------------------------	------------------------------

⁷ One-time sample of VOC's for background levels, taken during first sampling event 2018.

⁸ Quarterly reduced to annually and monthly reduced to quarterly following two complete years of sampling.

⁹ Water elevation quarterly.

SGW-5		
	•	

The five groundwater wells (BH-01, BH-02, BH-03, BH-04, BH-05) were drilled by Agra in 2009. It is our understanding that the SGW wells (SGW-1, SGW-2, SGW-3, SGW-4, SGW-5) were pushed/dug into the bank of the streams to represent the ephemeral creek water. The wells do not have a sand pack around the slots of the well piezometers, which means there is a higher potential for sedimentation infiltration into the wells. A brief description of the groundwater and SGW sampling locations is presented in Table 3-5. The locations of the Hazelton WMF groundwater sampling locations are shown in Figure 3. Groundwater table elevations are shown in Table 3-4.

GW Wells	Ground Elev.	Stick Up (m)	Well Depth (m)	WL Depth (m)	GW Elev. (m)
BH-01	141.77	0.36	44.50	21.32	120.81
BH-02	141.84	0.32	33.24	21.30	120.86
BH-03	114.9	0.44	60.05	56.65	58.69
BH-4A	122.31	0.92	17.59	14.58	108.65
BH-4B	122.31	1.02	3.00	2.68	120.65
BH-5A	93.94	0.51	18.53	dry	dry
BH-5B	93.94	0.49	5.60	3.56	90.87

 Table 3-5: Groundwater Table Elevations, July 30, 2014

Note: Agra surveyed borehole elevations to an arbitrary datum.

SHA estimates that actual elevations are 330 m higher than Agra's reported values in this Table.

Monitoring	UTM Coordinates	Description	2019 Sampling
Locations	(+/ - 5 m)		Notes
BH-01	593609.194 E 6121753.831 N	South east of the Landfill and considered to be up- gradient and thus represents background groundwater quality	Sampled: April 17, 2019 August 13, 2019 November 20, 2019
BH-02	593264.351 E6121910.517 N	South east of the Landfill and considered to be up- gradient and thus represents background groundwater quality	Sampled: April 17, 2019 August 13, 2019 November 20, 2019
BH-03	592642.79 4E 6122053.098 N	Located 330 m west of the Iron Pond , and is between the Landfill and the closest public drinking water well which is approximately 2 km south west from the Landfill, Response Plan Monitoring Location	Dry during: April 17, 2019 August 13, 2019 November 20, 2019
BH-4A	593506.8 E 6122164.167 N	Deep piezometer in BH-04. South east of the Landfill and considered to be up-gradient and thus represents background groundwater quality	Not Sampled in 2019
BH-4B	593506.8 E 6122164.167 N	Shallow piezometer in BH-04. South east of the Landfill and considered to be up-gradient and thus represents background groundwater quality	Sampled: April 17, 2019 August 13, 2019 November 20, 2019
BH-5A	592591.139 E6123018.88 N	Deep piezometer in BH-05 and historically dry. Directly downgradient of the landfill and is situated near the intersection of the landfill access road and Highway 16	Not sampled in 2019. Dry.
BH-5B	592591.139 E 6123018.88 N	Shallow piezometer in BH-05. Directly downgradient of the landfill and is situated near the intersection of the landfill access road and Highway 16, Response Plan Monitoring Location	Sampled: April 17, 2019 August 13, 2019 November 20, 2019
SGW-1	592698.027 E 6 6122231.314 N	Downstream of the SW corner of the Phytoremediation perimeter ditch	Sampled: April 17, 2019 August 13, 2019 November 20, 2019
SGW-3	592673.678 E 6122409.984 N	Downstream of the NW corner of the WMF site, downstream of the Wetland #4 discharge rock infiltration trench	Sampled: April 17, 2019 August 13, 2019 November 20, 2019
SGW-2	592533.158 E 6122444.271 N	Downstream of SGW-3, Response Plan Monitoring Location	Sampled: April 17, 2019 August 13, 2019 November 20, 2019
SGW-4	592524.282 E 6122701.595 N	Downstream of Beaver Pond, Response Plan Monitoring Location	Sampled: April 17, 2019 August 13, 2019 November 20, 2019
SGW-5	592525.999 E 6122269.748 N	Downstream of SGW-1, Response Plan Monitoring Location	Sampled: April 17, 2019 August 13, 2019 November 20, 2019

 Table 3-6: Description of Groundwater Sampling Locations

3.4.4 Shallow Ground Water Quality Results

Shallow groundwater quality results are tabulated in Table 2 (Appendix B). Charts 6 to 11 show the overall shallow groundwater quality trends. During 2018 and 2019, all SGW wells were sampled for dissolved metals. This round of sampling completes two years of data for the SGW sampling locations. However, 2019 sampling was conducted quarterly instead of monthly.

3.4.4.1 SGW-1

Shallow ground water well SGW-1 is located in an ephemeral creek which is similar to the wetland areas bordering the landfill site. Currently, run-on flowing into the creek is from the perimeter ditch bordering the south and west sides of the Phase 2 expansion area, and the south phytoremediation perimeter ditch. Pooling leachate runoff from the Phase 2A expansion area was spilling into the ditch and flowing into the ephemeral creek. However, this was stopped in July of 2018 when a leachate collector was installed as part of the Environmental Upgrades which now captures this leachate.

Samples at this location showed elevated conductivity, TOC, and total hardness. Field conductivity ranged from 460 to 657 μ S/cm from April 2019 to November 2019. This range is lower then the 2018 range by one order of magnitude, but it is still above the conductivity of naturally occurring water (<200 μ S/cm). TOC ranged from 9.5 to 24.4 mg/L exceeding the BCWQG-DW criteria. These values also show a reduction when compared to the 2018 TOC range (75 – 342 mg/L). The hardness ranged from 205 to 457 mg/L. These values show a reduction when compared to the 2018 and 2017 data set. Notably, chlorides were compliant with values ranging from 7.1 to 59.9 mg/L which show a decrease from the 2018 range (98.1 to 105 mg/L).

There were exceedances of BCWQG-DW, BCWQG-AW and BC CSR-DW criteria for metals. Metals exceeding any of the criteria in one or more case include aluminum, arsenic, chromium, cobalt, iron, manganese, mercury, phosphorous and Zinc. In general, the sampling results are lower when compared to the 2018 results.

3.4.4.2 SGW-3

Shallow groundwater well SGW-3 is also located in an ephemeral creek which enters the area northwest of Wetland #4 at the NW corner at site. There are two sources of flow through this monitoring location. Firstly, run-on water that flows into the ephemeral creek via perimeter ditch sections north of Wetland #3 and #4, and west of the phytoremediation area. Secondly, SGW-3 is downstream of the Wetland #4 rock infiltration trenches which will contribute conditioned leachate flows when a controlled discharge event takes place. During 2019, a controlled discharge event started October 8, 2019 and ended during freezing conditions at the end of November 2019 (after the November 19, 2019 sampling event). When comparing the November 2019 sampling results to the April and August 2019 results, the water at SGW-3 does not appear to have been significantly impacted by this discharge event.

Samples at this location showed elevated conductivity, TOC, and total hardness. Field conductivity ranged from 804 to 1126 μ S/cm from April 2019 to November 2019. This range is well above the conductivity of typical surface water (<200 μ S/cm). Notably, the November 2019 sample conductivity (804 μ S/cm) was the lowest recorded value for SGW-3. TOC ranged from 24.7 – 36.9 mg/L and exceeded the BCWQG-DW. This range is an improvement when compared to the 2018 range of 51 – 160 mg/L. Hardness ranged from 623 to 673 mg/L. All 2019 hardness values were within the 2018

hardness range. Lastly, the concentrations of chloride at SGW-3 were consistently less then the 2018 results. The 2019 chloride range was 9.4 to 12.4 mg/l and the 2018 chloride range was 43.9 to 49.2 mg/L.

There were consistent exceedances of BCWQG-DW, BCWQG-AW and BC CSR-DW criteria for several metals. Metals exceeding either criteria in one or mores case include arsenic, cobalt, iron, manganese, and phosphorous. When comparing cobalt, iron, manganese, and phosphorous exceedances to the 2018 data, the 2019 values are similar. Values that have decreased in 2019 when compared to the 2018 data include arsenic, aluminum, chromium and vanadium. Arsenic only exceeded the BCWQG-AW criteria during the August and November sampling events. Whereas, each 2018 sampling event exceeded both the BCWQG-AW and DW criteria. Aluminum, chromium and vanadium had exceedances in 2018, but the concentrations noted in 2019 had decreased to compliant levels for these metals.

3.4.4.3 SGW-2

Shallow groundwater well SGW-2 is located within the ephemeral creek downstream of SGW-3, as observed in Figure 3. This monitoring location is situated near the property boundary. When comparing the November 2019 sampling results to the April and August 2019 results, the groundwater at this location does not appear to be significantly impacted from the Wetland #4 discharge event. In general, the November 2019 sampling results had fewer and lower exceedance values then the two previous sampling events.

Samples from this location showed varying results for key leachate indicating parameters. In general, it is expected that results should decrease at SGW-2 compared to SGW-3. Parameters that have decreased at SGW-2 include conductivity, hardness, and ammonia. Field conductivity ranged from 528 μ S/cm in April 2019 to 1053 μ S/cm November 2019. This range is well above the conductivity of typical surface water (<200 μ S/cm). When compared to SGW-3 conductivity, an expected reduction is observed. Notably, the lowest conductivity was observed in November 2019, likely caused by seasonal rains diluting flows. The hardness ranged from 303 to 582 mg/L which is lower compared to 623 – 673 mg/L at SGW-3. Ammonia ranged from 0.366 to 0.908 mg/L which is roughly a 50% reduction from SGW-3 values.

Two key leachate indicating parameters that had higher values at SGW-3 include TOC and chloride. TOC ranged from 82 – 198 mg/L and exceeded the BCWQG-DW. These values far exceeded those at SGW-3. This could show that samples at this location could be influenced by organic material commonly found in swampy areas (SGW-2 is located in a swampy area). Chloride values were elevated but within limits with values ranging from 51 to 123 mg/L. All 2019 samples exceed the corresponding values at SGW-3. This trend has not been observed in previous years with 2017 and 2018 data always showing higher chloride concentrations at SGW-3. For this reason, the elevated chloride data at SGW-2 is inconclusive and requires further monitoring to assess long term trends of chloride.

There were consistent exceedances of BCWQG-DW, BCWQG-AW and BC CSR-DW criteria for several metals. Metals exceeding either criteria in one or more cases include aluminum, arsenic, beryllium, cadmium, cobalt, iron, lithium, manganese, and phosphorous. In general, there are key leachate indicating parameters which show a decrease in concentration when compared to SGW-3 results. These metals include cobalt, iron and manganese. Notably, iron decreased by roughly 50% during the April 2019 and August 2019 sampling events, and iron decreased by roughly 80% during the

November 2019 sampling event. Other metals exceeding criteria with greater values then corresponding values at SGW-3 include aluminum and arsenic.

Of importance, there were exceedances of the CSR-DW criteria for aluminum, arsenic, cobalt, iron, lithium and manganese. Aluminum exceeded once during the April 2019 sampling event with a value of 20.7 mg/L. This is the highest aluminum value observed at the Hazelton WMF site, including the historic leachate seep at SW-03. Following the April 2019 sampling event, aluminum concentrations decreased to compliant levels in line with background concentrations. Because of this, the spike in April 2019 does not appear to be of concern. Furthermore, this spike does not correspond with discharge from the landfill site. Arsenic levels are elevated compared to background concentrations. However, exceedances of arsenic have been observed in background concentrations at BH-01 and elevated arsenic levels are observed at BH-4B. Cobalt levels are similar to background concentrations at BH-4B. Iron levels during the April 2019 sampling event were elevated to values typically observed at the historic log weir which represents attenuated leachate. However, the August 2019 and November 2019 sampling events show results slightly above background concentrations at BH-4B. Furthermore, iron is commonly observed in background concentrations for groundwater and surface water. For this reason, to completely attribute elevated iron concentrations to leachate discharge would require further investigation. Lithium had one exceedance during the April 2019 sampling event. Following the April 2019 sampling event, lithium concentrations decreased to compliant levels in line with background concentrations. Lastly, manganese levels are elevated with concentrations ranging from 4.85 mg/L to 9.55 mg/L during 2019.

As per the OC, the operational certificate holder must implement the Groundwater Quality Exceedances Response Plan (Response Plan) if exceedances of the CSR DW are found at SGW-2. However, the Response Plan cannot be conducted yet as the Phytoremediation system is still undergoing construction. This location should continue to be monitored for exceedances of the CSR-DW in the future.

3.4.4.4 SGW-4

Shallow groundwater well SGW-4 is located within the ephemeral creek downstream of Beaver Pond, as observed in Figure 3. This monitoring location is situated near the property boundary and 2018 was the first year that samples were collected from this location.

Samples from this location showed elevated conductivity, TOC, and total hardness. Field conductivity ranged from $291 - 644 \mu$ S/cm from April 2019 to November 2019. All though this range is well above the conductivity of typical surface water (<200 μ S/cm), it is an improvement when compared to the 2018 data (388 – 1278 μ S/cm). TOC was lower at this location than the other shallow groundwater wells but still exceeded the BCWQG-DW criteria and ranged from 10.5 – 19.2 mg/L. Hardness ranged from 426 – 506 mg/L which is lower then the 2018 range (494 – 656 mg/L).

There were exceedances of BCWQG-DW, BCWQG-AW and BC CSR-DW criteria for several metals. Metals exceeding either criteria in one or more cases include cobalt, iron, and manganese. Notably, 2019 aluminum and arsenic values have decreased to compliant levels when compared to 2018 values.

Of importance, CSR-DW exceedances include cobalt for all 2019 samples, and manganese for the August sampling event. The 2019 Cobalt range was 0.00107 to 0.00772 mg/L which is lower then the 2018 Cobalt range of 0.00842 to 0.00934 mg/L. Furthermore, BH-4B a shallow piezometer located upstream of the landfill has shown consistent exceedances an order of magnitude greater than the SGW-

4 2019 Cobalt values. The August 2019 manganese result was 1.76 mg/L is similar to background concentrations and it is similar to the lowest value observed in 2018.

3.4.4.5 SGW-5

Shallow groundwater well SGW-5 is located within the ephemeral creek downstream of SGW-1, as observed in Figure 3. This monitoring location is situated near the property boundary and 2019 was the second year that samples were collected from this location.

Samples from this location showed elevated conductivity, TOC, and total hardness. Field conductivity ranged from 246 to 476 from April 2019 to November 2019. All though this range is slightly above the conductivity of typical surface water (<200 μ S/cm), it is an improvement when compared to the 2018 data (334 – 737 μ S/cm). Also, Conductivity at this location is lower than values at SGW-1 (460 to 657 μ S/cm). TOC ranged from 6.9 to 8.56 mg/L and exceeded the BCWQG-DW. This range shows a decline when compared to the 2018 values. Chloride was below the guidelines and ranged from 3.5 – 4.5 mg/L. Notably, the November sample at SGW-5 was 3.5 mg/L and the corresponding SGW-1 sample was 59.9 mg/L, indicating natural attenuation of potential leachate impact.

There were consistent exceedances of BCWQG-DW, BCWQG-AW and BC CSR-DW for several metals. Metals exceeding either criteria in one or more case include cobalt, iron, and manganese. In general, metal concentrations at SGW-5 are lower than upstream SGW-1.

Of importance, CSR-DW exceedances include cobalt for the April and August 2019 samples, and iron for the November sampling event. The 2019 Cobalt range was 0.00409 to 0.00922. Similar to SGW-4, BH-4B has shown consistent exceedances an order of magnitude greater than the 2019 results. The November 2019 iron result was 13 mg/L. It is unlikely that this value is the result of leachate flows given that leachate was not discharged at this location during 2019. Furthermore, the lack of metal exceedances, low chlorides and low field conductivity during this sampling event would not suggest significant leachate impact.

3.4.5 Groundwater Quality Results

Groundwater quality results are tabulated in Table 3 in Appendix B. Charts 12 to 18 in Appendix C show the overall groundwater quality trends. Of importance, BH-03 was dry during each sampling event.

3.4.5.1 Background Groundwater Quality

Groundwater monitoring locations BH-01, BH-02, and BH-04 are all up gradient of the landfill and are assumed to represent background water quality. Monitoring well BH-04 has nested piezometers with one deep, and one shallow piezometer. These are labelled BH-4A and BH-4B. These samples show that the groundwater in the area tends to exceed BCWQG-AW and DW, and BC CSR-DW standards for several parameters.

Deep wells, BH-02 and BH-4A have high conductivity, ranging from 936 to 949 μ s/cm and 751 to 773 μ s/cm, respectively. Both wells had hard water (total hardness) ranging from 457 - 482 mg/L and 203 - 225 mg/L for BH-02 and BH-4A, respectively. Similarly, the shallow piezometer BH-4B had elevated conductivity ranging from 43 – 666 μ s/cm and hardness ranging from 9 – 355 mg/L.

Upstream BH-01 has lower conductivity than BH-02, BH-4A, and BH-4B; however, it is still relatively high, ranging from 387 to 537 μ s/cm. Notably, the November 2019 sampling event experienced the highest conductivity reading. The water at BH-01 was also hard, ranging from 154 to 329 mg/L.

There were exceedances for several metal concentrations at the background wells. Monitoring wells BH-4A, BH-4B, BH-02 and BH-01 exceed either BC WQG AW and DW, and BC CSR DW guidelines for, aluminum, arsenic, cadmium, cobalt, copper, iron, manganese and phosphorous. Specifically, exceedances of BC CSR DW criteria were experienced for cobalt and iron at BH-04B, the shallow nested piezometer. Cobalt ranges from nondetectable limits to 0.0158 mg/L (June 2017 sampling event). Iron ranges from nondetectable limits to 11.4 mg/L. Notably, the April 2019 sampling event experienced the highest iron reading.

3.4.5.2 Groundwater Quality Downgradient of Landfill

Monitoring well BH-5B is the only groundwater well located downgradient from the landfill. It is located at the NW corner of the Hazelton WMF property boundary, along Highway 16. The groundwater elevation in BH-5B is typically about 30 m below the groundwater elevation in the majority of the other wells (with the exception of BH-03 and BH-4B). This disparity in water table elevation could partly contribute to the difference in sampling results.

The groundwater from BH-5B was typically very hard, has high conductivity, and has higher chloride concentrations than most of the background wells, as shown in Charts 12, 13, and 16 in Appendix C. These elevated parameters are typical of groundwater that is affected by leachate. However, as mentioned above, the background groundwater has naturally occurring high conductivity and hardness concentrations (BH-02). Nevertheless, the concentrations at BH-5B are constantly above the levels in BH-02, suggesting leachate impact. The high chloride levels at this well (163 to 226 mg/L, 2019 range) are more indicative of attenuated leachate impact as they are comparable to values observed at SW-04, the historic log weir location. Another possible source of chloride at this well location could be runoff from the highway during salting operations.

Another parameter that is associated with leachate impact is ammonia. The ammonia levels at BH-5B range between 0.029 and 0.078 mg/L which is far below ammonia observations at the historic leachate seep (9.9 to 27.7 mg/L). Also, this range is similar to those observed at background wells BH-01 and BH-02. This information suggests that ammonia concentrations at BH-5B are not influenced by leachate impact.

There were metals in exceedance of both the BCWQG-DW, BCWQG-AW and BC CSR-DW. Exceedances of the AW limits were observed for arsenic. Metals exceeding any criteria in one or more case include arsenic, cobalt, iron, manganese, and phosphorous.

Of importance, there were exceedances of the CSR-DW standards at BH-5B for cobalt, iron, and manganese concentrations in 2019. Cobalt exceedances ranged from 0.00409 to 0.00958 mg/L. This range is similar to background concentrations observed at BH-4B. Furthermore, in May 2015, cobalt at BH-4A was observed to be 0.0141 mg/L. Iron exceedances ranged from 7.1 to 12.2 mg/L. Similar values are observed at BH-4B. Manganese exceedances ranged from 1.83 to 3.62 mg/L. Similar exceedances can be observed at BH-4B, and BH-01 and BH02 experience consistent exceedances of the BCWQG-DW criteria. In general, it appears water quality at BH-5B could be partially influenced by leachate impact and background water quality.

4. DISCUSSION ON SURFACE WATER AND GROUNDWATER QUALITY RESULTS

4.1 Surface Water Quality

4.1.1 Surface Water

Surface water entering the site at SW-01 had elevated concentrations of aluminum, chromium, copper, iron, manganese and phosphorous. These elevated concentrations are regularly in noncompliance with BCWQG-AW and DW criteria. Furthermore, the exceedances in 2019 are consistent with historic data. Surface water entering the site at SW-02 had elevated levels of aluminum iron, manganese, and phosphorus. 2019 exceedances for these metals were similar to historic data. Water quality at SW-02 in 2019 is similar to SW-01, with the exception of aluminum concentrations, which are lower at SW-02. Historically, these locations have shown naturally occurring exceedances of the BCWQG criteria, particularly for metals. Thus, elevated metals at downstream surface water locations cannot be solely attributed to leachate impact.

In 2019, surface water sampling location SW-06 at the inlet to Beaver Pond had the highest chloride concentrations of all the sampling locations, including all historic sampling events. This spike in chloride at SW-06 was observed during the August 2019 sampling event. Following this sampling event, the November 2019 sample results for chloride decreased to commonly observed levels. This trend was also observed at SW-08, upstream of SW-06 on the north side of Highway 16. Chloride levels at SW-08 were 30% less then SW-06. However, chloride levels at both SW-06 and SW-08 are above the results from the historic leachate seep, as shown in in Chart 2. For this reason, surface water quality is believed to be impacted by highway run-off opposed to leachate. Furthermore, impacted runoff from the landfill is now contained at site and no longer flows into the Beaver Pond. Lastly, metal exceedances found at SW-05 are similar to the Beaver Pond inlet locations SW-06 and SW-08, and thus assumed to be naturally occurring.

Surface water sampling location SW-07 is downstream from the other monitoring stations and has water quality similar to that of background concentrations and therefore does not show signs of leachate impact.

4.2 Groundwater Quality

4.2.1 Shallow Groundwater Wells

In general, the results from the SGW wells show elevated concentrations of conductivity, chlorides, TOC, and total hardness in all samples.

Sampling location SGW-1 is located downstream of the southwest corner of the Phytoremediation perimeter ditch. When compared to the 2018, SGW-1 data show decreases for key leachate indicating parameters as shown in charts 6, 7, 9, 10, and 11. This is expected given that leachate flows from the new expansion have been redirected to the leachate collection system. Downstream at the property boundary, SGW-5 continued to show improvements in water quality. Of note conductivity and chloride at this location compared to SGW-1 indicate that the water is being highly diluted and/or attenuated by the time it reaches the property boundary. Furthermore, metals in exceedance of BC CSR-DW criteria

at SGW-1 that have decreased to compliant levels at SGW-5 include cobalt, iron and manganese. Specific exception of this include the April 2019 and August 2019 cobalt results, and the November 2019 iron result. However, these 2019 exceedances have been observed in background concentrations. Also, no impacted runoff from the landfill has been discharged to either SGW-1 and SGW-5 in 2019. For these reasons, it is believed that the few BC CSR-DW exceedance at SGW-5 are not caused by impacted flows from the landfill.

Similarly, the data shows that the shallow groundwater is being diluted and/or attenuated between SGW-3 and SGW-2. However, the 2019 sample results for SGW-2 do not always follow this dynamic making. Because of this additional investigation is required to determine leachate impacts at SGW-2. In summary, key leachate indicating parameters showing expected decreases in concentration include conductivity, hardness, ammonia, cobalt, iron, and manganese. Whereas, conflicting results showing an increase at SGW-2 are TOC, chloride, and aluminum and arsenic. As previously mentioned, these contrasting results are likely influenced by swampy waters. Furthermore, these results do not correlate to the Wetland #4 leachate discharge event. Even though several exceedances of BC CSR-DW criteria were experienced at SGW-2, none of these exceedances were observed in the Wetland #4 sampling events. The 2019 Wetland #4 data shows better water quality then the background water quality, with no exceedances of BC WQG-AW from August 2019 to November 2019. For these reasons, BC CSR-DW exceedances at SGW-2 are not necessarily directly to linked leachate discharge in 2019. Regardless, the OC stipulates that the Groundwater Exceedances Response Plan must be implemented if exceedances of the CSR-DW are found at either SGW-2 or SGW-4. It is recommended that SGW-2 continue to be monitored for long term water quality trends to confirm if results will form consistent trends.

All shallow groundwater monitoring locations show elevated metal concentrations for aluminum, arsenic, iron, and manganese. SHA suspects that the elevated metals are the result of low-pH groundwater originating from wetlands and are not necessarily related to landfill leachate impacts. Also, the SGW wells are potentially impacted by surface water and therefore exceedances of metals at these locations could partly be attributed to natural exceedances found in background surface water.

4.2.2 Groundwater Wells

The background groundwater quality at BH-01 and BH-02 was found to have elevated conductivity, hardness, manganese and phosphorous. Background water quality at BH-4B contrastingly has low conductivity and hardness with far more exceedances of metals including aluminum, cadmium, cobalt, copper, iron, manganese and phosphorous. Furthermore, BH-4B experiences regular BC CSR-DW exceedances for cobalt and iron. The contrast in results is attributed to BH-4B being a shallow well is likely influenced by surficial swamp waters.

The water in BH-03, which would intercept any flow from landfill leachate before it reached the public water well was dry during 2019. In previous years, there was no concern of leachate impacting this area. The risk with this trend changing in 2019 is considered to be low.

Monitoring location BH-5B is the only well that is downgradient of the landfill. Its results showed potential evidence of leachate impact. It had elevated conductivity values that were higher than background and elevated chloride concentrations that were much higher than background conditions and similar to those found at the leachate seep. However, several of the metal exceedances are less or similar to background conditions. For instance, Ammonia levels at BH-5B are consistently lower than background concentrations at BH-01 and BH-02, as shown in Chart 14. This shows that ammonia

concentrations at BH-5B are similar to background conditions. In general, it is challenging to determine the portion of contamination resulting from leachate or other sources such as nearby highway operations. For these reasons, additional monitoring locations are required to determine whether the landfill is impacting groundwater at the downstream BH-5B monitoring location.

5. QUALITY ASSURANCE AND QUALITY CONTROL

A quality assurance and quality control (QA/QC) program is a system of procedures, checks, audits and corrective actions that will assist in ensuring that the data generated at the laboratory is of the highest achievable quality. This is of prime importance, as the monitoring data forms the basis for all of the conclusions regarding the impact of the Landfill on the surrounding environment. As per the OC, one duplicate sample should be collected during each sampling event from one of the discharge points. Furthermore, each duplicate sample should be submitted to the laboratory; one of the pair identified as the regular sample, and the other, as a blind sample identified by a fictitious site-name established solely to identify the duplicate sample. The results of the field duplicates in terms of the degree of variation as the relative percent difference should be reported for each parameter, as specified in the OC.

In 2019, duplicate samples were obtained during the August and November groundwater sampling events, the November surface water sampling event and the September 16^{th} Wetland #4 sampling event. The results of the duplicate samples and the degree of variation as the relative percent difference for each parameter are presented in Table 3. A summary of the analytes which were out of compliance (RPD > 20%) are listed below in Table 5-1.

Sampling Location	Monitoring Event	Analyte	RPD
BH-01	August 13, 2019	Dissolved Aluminum	200%
		Dissolved Barium	39%
		Dissolved Calcium	35%
		Dissolved Cobalt	192%
		Dissolved Iron	196%
		Dissolved Lithium	129%
		Dissolved Manganese	137%
		Dissolved	66%
		Molybdenum	
		Dissolved Rubidium	127%
		Dissolved Silicon	104%
BH-5B	November 20, 2019	Dissolved Aluminum	48%
		Dissolved Copper	75%
		Dissolved Nickel	22%
		Dissolved Selenium	39%
		Dissolved Zinc	80%
SW-05	November 21, 2019	Alkalinity (Total as CaCO3)	89%
		Chemical Oxygen	54%
		Demand (COD)	
		Nitrate (N)	21%
		Total Aluminum	58%
		Total Chromium	26%
		Total Copper	26%
		Total Lead	40%
		Total Rubidium	23%

Table 5-1: 3	Summary o	f Duplicate	Sample	Non-Compliance
--------------	-----------	-------------	--------	----------------

RDKS – Hazelton WMF 2019 Annual Monitoring Report PRJ20010

20

		Total Vanadium	34%
SW-08	November 21, 2019	Alkalinity (Total as	89%
		CaCO3)	
		Total Aluminum	49%
		Total Arsenic	42%
		Total Barium	38%
		Total Cadmium	24%
		Total Cesium	64%
		Total Chromium	49%
		Total Cobalt	36%
		Total Copper	65%
		Total Iron	40%
		Total Lead	43%
		Total Mercury	31%
		Total Nickel	40%
		Total Potassium	54%
		Total Silicon	23%
		Total Tungsten	56%
		Total Zinc	80%
Wetland #4	September 16, 2019	Total Aluminum	33%
	· · ·	Total Chromium (Cr)	22%
		Total Manganese (Mn)	145%
		Total Selenium (Se)	25%

Notably, parameters that are out of compliance in two or more instances include aluminum, cobalt, copper, chromium, iron, lead, manganese, nickel, rubidium, selenium, silicon and zinc.

6. CONCLUSIONS AND RECOMMENDATIONS

The Operational Certificate 17226 for the Hazelton Regional Landfill was amended on February 7, 2018. As such, the environmental monitoring program in 2019 followed the amended OC for a second year. This has provided two years of monitoring data for the altered conditions at site result from the Hazelton Environmental Upgrades project.

Sampling results suggest that the surface water in the area consistently exceeds BCWQG for aluminum, cadmium, iron, manganese, and phosphorous. This is true of both the background samples taken from SW-1, and SW-2, and the downstream samples from SW-5 and SW-7 and therefore the exceedances are presumed to be naturally occurring. Surface water sampling locations SW-6 and SW-8 come from a culvert that flows underneath Highway 16 and flows into the Beaver Pond. The metals concentration at SW-5 at the outlet of Beaver Pond are similar to SW-6 and SW-8, suggesting no leachate impact at the Beaver Pond. This is to be expected given that leachate flows have been redirected such that leachate no longer flows into Beaver Pond. Furthermore, SW-06 and SW-08 experienced a spike in chloride concentrations that is not influenced by impacted run-off from the landfill. As such, observed exceedances at SW-05 are likely caused by water quality at highway 16. Lastly, SW-09 and SW-10 were not sampled during the 2019 year because they were dry.

Shallow groundwater wells appear to have increased leachate impact with closer proximity to the landfill. It has been observed that the impact at the property boundary has been significantly diluted/attenuated in the case of flow from SGW-1 to SGW-5. In contrast, flows from SGW-3 to SGW-2 show inconclusive results for some key leachate indicating parameters. This is especially unclear when comparing Wetland #4 water quality to that of SGW-2. For this reason, it is recommended that the SGW wells be monitored for another year to confirm if water quality trends stabilize. Lastly, SGW-4 water quality showed some BC CSR-DW exceedances in 2019 which were also observed in background concentrations. Thus, exceedances of BC CSR-DW at SGW-4 are not considered to be caused by leachate impact, rather naturally occurring exceedances.

The only downgradient groundwater well showing elevated levels of leachate indicators is BH-5. However, several of these exceedances are similar to background conditions. Also, it is problematic to determine the portion of contamination resulting from nearby highway operations. For these reasons, it is challenging to determine whether or not the landfill is impacting groundwater in the vicinity of the Hazelton WMF site. In order to determine if groundwater is in fact impacted by the landfill, at least two more downgradient groundwater monitoring wells are required. Furthermore, these wells should have nested wells with shallow and a deep well to partition perched water table effects and deep groundwater effects. Moreover, the nested wells would be similar in depth to SGW wells providing data from a similar sources making comparisons more accurate.

The water in BH-03, which would intercept any flow from landfill leachate before it reached the public water well, was dry during 2019. However, the risk of landfill leachate impact is low when considering historical trends. It is recommended that a deeper well be installed at a similar location to allow collection of data to confirm acceptable water quality results. This is important to confirm that the water source for the public water wells is safe for usage.

There was a discharge via Wetland #4 for 2019. It started October 8, 2019, and ended during freezing conditions at the end of November 2019. Prior to discharge, the OC requirements were confirmed for compliance, as shown in Table 4: Wetland #4 Water Quality Data, including lethal toxicity testing. However, the volume of discharge was not recorded, as per the OC. This occurred because the discharge weir was not completely installed. Weir construction will be completed in the 2020 construction season.

After a thorough review of the 2019 monitoring data submitted by RDKS staff, SHA recommends the following:

- Surface water monitoring should continue to be conducted as per the amended OC.
- Shallow groundwater wells are recommended to be sampled quarterly for another year. Although 2019 was the second year of sampling, water quality results show inconsistent results. Because of this, additional data will help determine trends more accurately.
- Groundwater monitoring should continue to be conducted as per the amended OC.
- Continue monitoring water quality at BH-5 and if leachate indicator parameters show an increasing trend, consider installing at least one new groundwater monitoring well downgradient of the landfill. The new well will help to monitor groundwater sufficiently and confirm the direction of groundwater flow. A survey should be completed in conjunction with the installation of any new well(s) to tie into actual datum.
- Installation of a deeper well in the vicinity of BH-03 should be conducted to ensure water quality can always be confirmed before reaching the public water wells.
- Monitor for exceedances of the CSR-DW at SGW-2, SGW-4, SGW-5, BH-03, and BH-5B. If exceedances are found, implement the Groundwater Exceedances Response Plan. Ensure that the Operational Certificate holder is familiar with the Response Plan.
- A qualified professional should continue to be retained on an annual basis to evaluate the water quality data.
- The sampling program should follow established handling procedures including preservation of samples and storage to ensure continuity and representativeness of the samples.

FINAL REPORT

7. STATEMENT OF LIMITATIONS

This report has been prepared by Sperling Hansen Associates (SHA) on behalf of the Regional District of Kitimat-Stikine in accordance with generally accepted engineering practices to a level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions in British Columbia, subject to the time limits and financial and physical constraints applicable to the services.

The report, which specifically includes all tables and figures, is based on engineering analysis by SHA staff of data compiled during the course of the project. Except where specifically stated to the contrary, the information on which this study is based has been obtained from external sources. This external information has not been independently verified or otherwise examined by Sperling Hansen Associates to determine its accuracy and completeness. Sperling Hansen Associates has relied in good faith on this information and does not accept responsibility of any deficiency, misstatements or inaccuracies contained in the reports as a result of omissions, misinterpretation and/or fraudulent acts of the persons interviewed or contacted, or errors or omissions in the reviewed documentation.

The report is intended solely for the use of the Regional District of Kitimat-Stikine. Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. Sperling Hansen Associates does not accept any responsibility for other uses of the material contained herein nor for damages, if any, suffered by any third party because of decisions made or actions based on this report. Copying of this intellectual property for other purposes is not permitted.

The findings and conclusions of this report are valid only as of the date of this report. The interpretations presented in this report and the conclusions and recommendations that are drawn are based on information that was made available to Sperling Hansen Associates during the course of this project. Should additional new data become available in the future, Sperling Hansen Associates should be requested to re-evaluate the findings of this report and modify the conclusions and recommendations drawn, as required.

Report Prepared By:

A.G. Martino

Anthony Martins, EIT Environmental Engineer

Report Reviewed By:

Dr. Iqbal Bhuiyan, P.Eng. Environmental Engineer

RDKS – Hazelton WMF 2019 Annual Monitoring Report PRJ20010 24

8. REFERENCES

AGRA & Associated Engineering, Proposed Hazelton Landfill Expansion Information in Support of the Applications For a Crown Lease and Landfill Operational Certificate, 2000, File 962576-3-0.

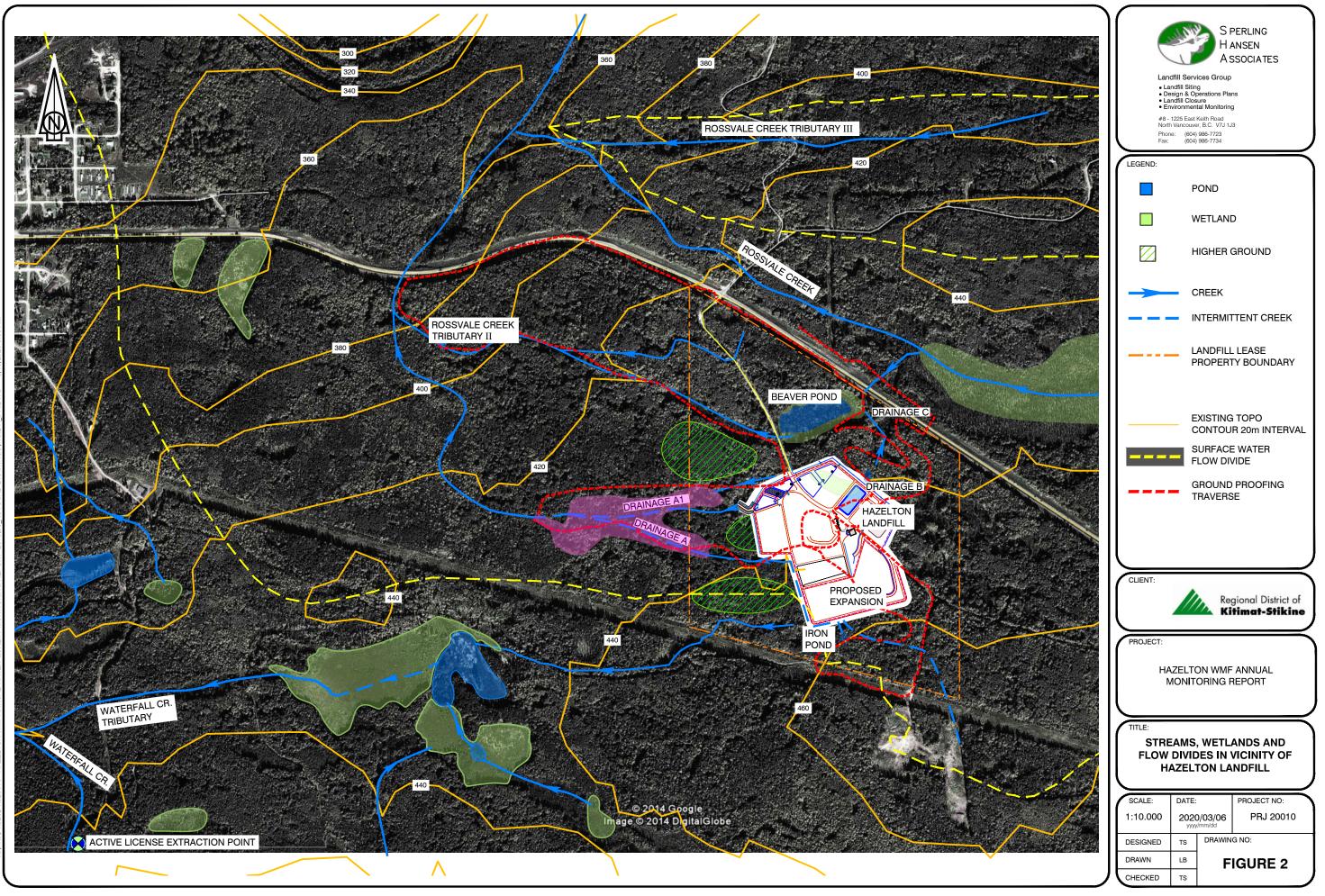
Ministry of Environment. Operational Certificate 17226 for the Hazelton Regional Landfill. Amended Date: February 7, 2018.

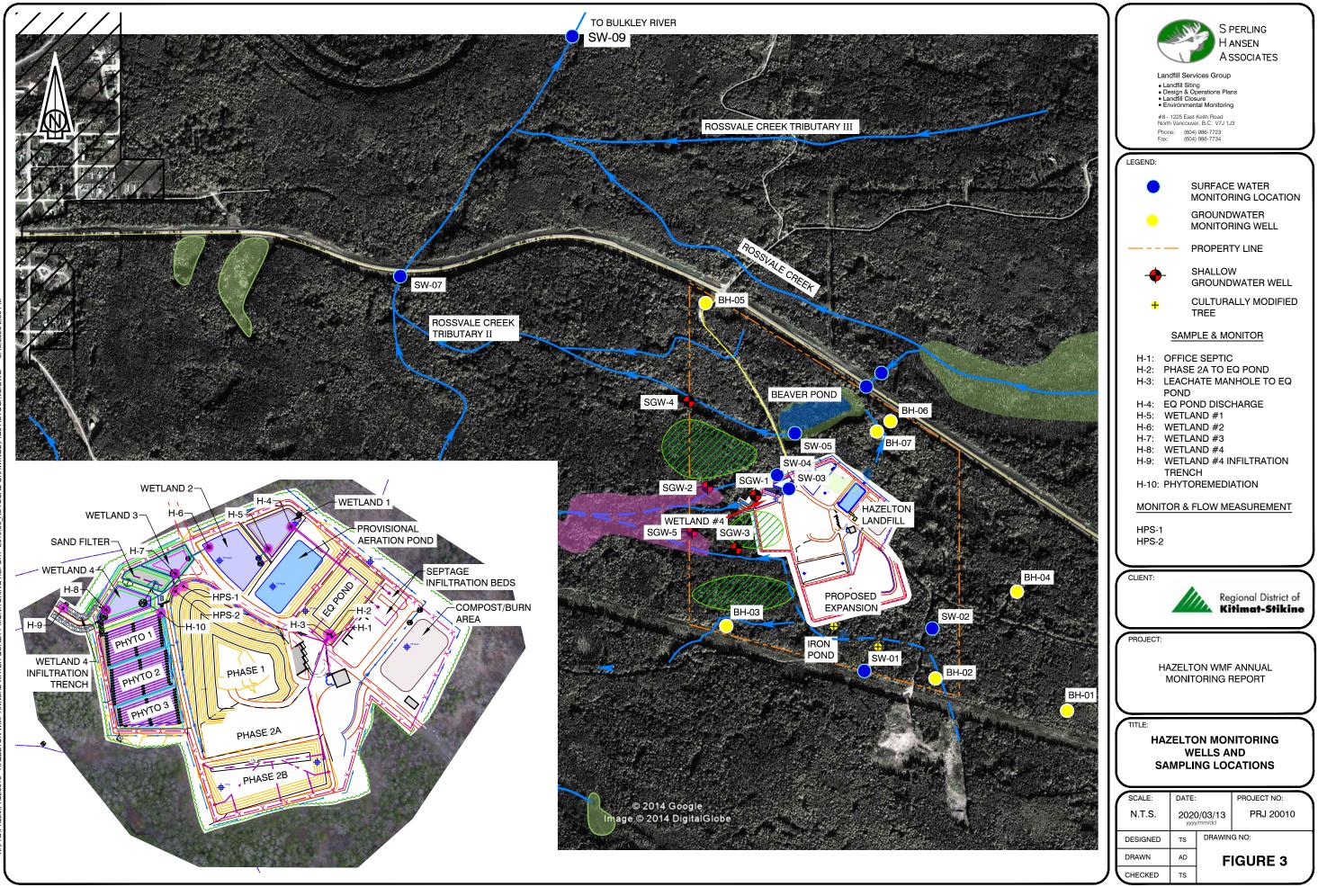
Sperling Hansen Associates. Hazelton Landfill, Design, Operations and Closure Plan 2014 PRJ13037.

Sperling Hansen Associates. Hazelton Landfill, Design, Operations and Closure Plan 2018 PRJ14060.

Sperling Hansen Associates. Hazelton Landfill Annual Report 2014 PRJ15024.

Sperling Hansen Associates. Hazelton Landfill Annual Report 2015 PRJ16018.


Sperling Hansen Associates. Hazelton Landfill Annual Report 2017 PRJ18020.


Sperling Hansen Associates. Hazelton Landfill Annual Report 2018 PRJ19009.

25

Appendix A: Figures

Appendix B: Tables

Table 1. Hazelton Surface Water Qua		BC MoE Guidelines					SW-01						SW-0)2
		Freshwater Aquatic Life (1) (2)	Drinking Water (2) (3)				211 01						577-0.	-
Parameters	Units													
Date				16-Apr-16	7-Jul-16	25-Oct-16	14-Jun-17	28-May-18	21-Nov-19	16-Apr-16	7-Jul-16	25-Oct-16	14-Jun-17	28-May-
Total Hardness	mg/L	-	-	18	41	23	22	16	17	22	21	26	14	12
Dissolved Hardness (CaCO3)	mg/L	-												
Alkalinity (Total as CaCO3)	mg/L	-	-	17	10	23	20		15	21 9.4	22	31	17	
Total Organic Carbon (C) Alkalinity (PP as CaCO3)	mg/L mg/L	+/- 20% of background	4.0	12.3	41.8	17.6	1.0		17.8	9.4	9.1	10.1	1.3	
Bicarbonate (HCO3)	mg/L		-											
Carbonate (CO3)	mg/L	-	-											
Hydroxide (OH)	mg/L	-	-											
Chemical Oxygen Demand (COD)	mg/L	-	-	42	145	50	92	45	47	33	38	35	46	27
Biological Oxygen Demand (BOD)	mg/L	-	-	<5.0	28	6.6	4.4	<2.0	0.00	<5.0	<4.0	<4.0	<4.0	<2.0
Sulphate (SO4)	mg/L	128-429 (e) 600	500, AO	<1.0	8.8 <1.0	<1.0	<1.0 <1.0	<0.30	<0.30	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<0.30
Chloride (Cl) Fluoride (F)	mg/L mg/L	0.4-1.87 (e)	250, AO 1.5	<1.0	<1.0	2	<1.0	<0.50	0.027	<1.0	<1.0	1	<1.0	<0.50
Total Kieldahl Nitrogen	mg/L	-	-					0.032	1.34					0.024
Ammonia (N)	mg/L	0.681-28.7 (d)	-	< 0.03	0.11	< 0.03	< 0.03	0.0121	0.0426	< 0.03	< 0.03	< 0.03	< 0.03	0.0107
Nitrate plus Nitrite (N)	mg/L	-	-	0.014	0.011	< 0.010	< 0.010	< 0.0071		0.011	< 0.010	0.012	< 0.010	< 0.006
Nitrite (N)	mg/L	0.06 -0.6 (c)	1.0	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0010	< 0.0010	< 0.01	< 0.01	< 0.01	< 0.01	< 0.001
Nitrate (N)	mg/L	32.8	10 MAC	0.014	0.01	< 0.01	< 0.01	0.0061	< 0.0050	0.011	< 0.01	0.012	< 0.01	< 0.005
Conductivity Field Cardinativity	uS/cm	-	-	34	44	51	44	20	38	44	45	64	33	~
Field Conductivity	uS/cm pH Units	9.0	- 7.0-10.5	6.2	5.2	6.5	6.1	28	7	6.4	6.3	7.0	6.6	21
Field pH	pH Units	6.5 - 9.0	7.0-10.5	0.2	5.2	0.5	0.1	5.5	7	0.4	0.5	7.0	0.0	6.0
TSS	mg/L	25 mg/L (background 25-250 mg/l)) (i)	<500, AO					5.5						0.0
Total Metals														
Total Aluminum	mg/L	0.023-0.1 (j,k)	9.5	0.325	11.1	0.275	0.155	0.115	1.55	0.475	1.640	0.031	0.047	0.033
Total Antimony (Ab)	mg/L	0.009	0.006	0.0001	0.0005	0.0003	< 0.00010	<0.00010	0.00022	0.0002	0.0004	0.0002	< 0.00010	< 0.000
Total Arsenic (As) Total Barium (Ba)	mg/L mg/L	0.005	0.01 MAC 1.0	0.0008	0.0064	0.0024	0.00078 0.014	0.00053	0.00083	0.001 0.014	0.0015	0.0009 0.014	0.00066	0.0004
Total Beryllium (Be)	mg/L	0.00013	-	< 0.0001	0.0003	< 0.020	<0.0014	<0.0012	<0.00010	< 0.0014	< 0.024	< 0.0014	< 0.00010	< 0.000
Total Bismuth (Bi)	mg/L	-	-	< 0.0001	< 0.0001	< 0.0001	< 0.00010	<0.000050	<0.000050	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.0000
Total Boron (B)	mg/L	1.2	5.0, MAC	0.005	0.045	< 0.004	0.005	< 0.010	< 0.010	0.004	0.015	< 0.004	0.005	< 0.010
Total Cadmium (Cd)	mg/L	0.000027 - 0.00280 (e) (k)	0.005, MAC	0.00007	0.00325	0.00017	0.000047	0.0000481	0.0000559	0.00004	0.00051	0.00004	0.000027	0.00000
Total Calcium (Ca)	mg/L	<4 sensitive to acid input	-	5.6	11.9	7.1	6.7	4.76	5.04	6.2	6.2	7.3	4.04	3.44
Total Cesium (Cs)	mg/L	-	-	0.000	0.0105	0.0000	0.000/7	<0.000010	0.000084	0.000	0.0001	0.000#	0.000.50	< 0.0000
Total Chromium (Cr) Total Cobalt (Co)	mg/L mg/L	0.001 (f) 0.11	0.05, MAC	0.0007	0.0105	0.0009	0.00067 0.00111	0.0004	0.00157 0.00049	0.0007	0.0021	<0.0005 0.00022	<0.00050 0.00014	0.0001
Total Copper (Cu)	mg/L	0.0032-0.0396 (e)	1.0, AO	0.00082	0.0123	0.00272	0.00111	0.00122	0.00711	0.0008	0.00082	0.00022	0.00014	< 0.000
Total Iron (Fe)	mg/L	1	0.3, AO	1.10	24.80	3.47	1.30	0.66	0.97	1.10	2.07	0.84	0.31	0.54
Total Lead (Pb)	mg/L	0.011-0.402 (e)	0.01	0.0002	0.0061	< 0.0001	< 0.00010	0.000059	0.00037	0.0003	0.0006	< 0.0001	< 0.00010	< 0.0000
Total Lithium (Li)	mg/L	-	-	0.0002	0.0046	0.0001	0.00011	< 0.0010	< 0.0010	0.0003	0.0008	0.0001	0.0001	< 0.001
Total Magnesium (Mg)	mg/L	-	-	1.06	2.81	1.36	1.19	1.06	1.26	1.51	1.27	1.94	0.89	0.793
Total Manganese (Mn)	mg/L	0.8-3.4 (e)	0.05, AO	0.183	1.63	0.554	0.165	0.126	0.0634	0.129	0.123	0.101	0.0304	0.117
Total Mercury (Hg) Total Molybdenum (Mo)	mg/L. mg/L	0.0001	0.001 0.25	<0.00002	<0.00002 0.0019	<0.00002	<0.00002 0.00012	<0.000050 0.000153	0.0000115 0.000113	<0.00002 0.0002	<0.00002 0.0002	<0.00002 <0.0001	<0.00002 <0.00010	<0.0000
Total Nickel (Ni)	mg/L mg/L	0.025-0.15 (e)	0.25	0.0002	0.0019	0.0002	0.00012	0.00133	0.00113	0.0002	0.0002	<0.0001	<0.00010	< 0.000
Total Phosphorus (P)	mg/L mg/L	0.005-0.015 (for lakes only)	0.01, AO	0.0011	1.69	0.0010	0.06	0.08	0.10	0.0012	0.0021	0.14	<0.050	0.079
Total Potassium (K)	mg/L	-	-	0.79	1.71	1.14	0.66	0.172	1.44	0.93	0.89	3.19	0.86	0.732
Total Rubidium (Rb)	mg/L							0.00025	0.00151					0.0004
Total Selenium (Se)	mg/L	0.002	0.01, MAC	< 0.0005	< 0.0005	< 0.0005	< 0.00050	< 0.000050	0.000071	< 0.0005	< 0.0005	< 0.0005	< 0.00050	< 0.0000
Total Silicon (Si)	mg/L	-	-	3.7	15.3	4.8	3.5	1.63	6.3	4.8	5	2.7	2	1.64
Total Silver (Ag)	mg/L	0.0001-0.003 (e)	- <200. AO	<0.00005	0.00026	<0.00005	<0.000050 1.47	<0.000010 1.49	0.000027	<0.00005 1.81	<0.00005	<0.00005	<0.000050 0.72	<0.0000
Total Sodium (Na) Total Strontium (Sr)	mg/L mg/L	-	<200, AO	0.038	0.082	0.06	0.0424	0.034	0.0351	0.04	0.035	0.055	0.72	0.795
Total Sulphur (S)	mg/L mg/L	-	-	<1	3	<1	<3.0	<0.50	<0.50	<1	<1	<1	<3.0	<0.50
Total Tellurium (Te)	mg/L		-	< 0.0002	< 0.0002	< 0.0002	<0.00020	<0.00020	< 0.00020	< 0.0002	< 0.0002	< 0.0002	< 0.00020	< 0.0002
Total Thallium (TI)	mg/L	0.0008	-	< 0.00002	0.00005	< 0.00002	< 0.000020	< 0.000010	< 0.000010	< 0.00002	< 0.00002	< 0.00002	0.000048	< 0.0000
Total Thorium (Th)	mg/L	-	-	< 0.0001	0.00	< 0.0001	< 0.00010	< 0.00010	< 0.00010	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.000
rotar filorium (fil)	mg/L	-	-	< 0.0002	< 0.0002	< 0.0002	< 0.00020	< 0.00010	< 0.00010	< 0.0002	< 0.0002	< 0.0002	< 0.00020	< 0.000
Total Tin (Sn)			1					0.00134	0.0297	1	1	1	1	0.0009
Total Tin (Sn) Total Tungsten (W)	mg/L			0.6	0.723	0	0.67777	0.07777	0.6	0.577	0.67	0	0	
Total Tin (Sn) Total Tungsten (W) Total Titanium (Ti)	mg/L	-	-	0.007	0.121	<0.005	<0.0050	<0.00010	<0.00010	0.009	0.034	<0.005	<0.0050	< 0.000
Total Tin (Sn) Total Tungsten (W) Total Titanium (Ti) Total Uranium (U)	mg/L mg/L	0.0085	- 0.02	< 0.00002	0.00027	< 0.00002	< 0.000020	< 0.000010	0.000044	< 0.00002	0.00003	< 0.00002	< 0.000020	< 0.0000
Total Tin (Sn) Total Tungsten (W) Total Titanium (Ti)	mg/L	- 0.0085 - 0.033-0.34 (e)	- 0.02 - 5.0, AO											

2018 data compared to 2018 criteria

A shaded value means exceeded the freshwater aquatic life criteria

A shaded value means reading exceeded the drinking water quality criteria. A shaded value means reading exceeded both the aquatic life and drinking water criteria. A shaded value means reading had detection limit exceeding criteria.

A shaded value means reading had detection limit exceeding criteria. (AO - Aesthetic Objective) 1. BC Environment Approved and Working Criteria for Water Quality, last updated March 2018 2. All criteria limits for BCWQG - based on Total Metal Concentration except Aluminum and Cadmium (Dissolved) 3. BC Environment Drinking Water Guidelines and Canadian Drinking Water Standards c. Limit dependent on chloride concentration. (MAC - Maximum Acceptable Concentration) d. Limit dependant on hardness. f. Limit for charming (V) g. Limit for total, no dissolved concentrations h conper (med) = (0.094# Hardness)/1000

h.copper (mg/L) =(0.094* Hardness)/1000

i. Limit for hardness based on total dissolved CaCO³
 j. at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
 k. Limit for dissolved metals, not total metals

May-18	13-Aug-19	21-Nov-19
12	33	15
		21
		12.4
27	145	43
<2.0	30.4	15
:0.30	<0.30	< 0.30
:0.50	1	<0.50
0.024	0.025	<0.020
.024	0.025	<0.020
0107	0.221	
.0107	0.221	0.0549
0.0060	0.0010	0.0010
0.0010	< 0.0010	<0.0010
0.0050	< 0.0050	< 0.0050
		39.80
21		
	7	7
6.0	5.56	
022	1.020	0.100
0.033	1.830	0.189
.00010	0.00011	< 0.00010
00048	0.00131	0.00059
0.008	0.049	0.009
.00010	< 0.00010	< 0.00010
000050	< 0.000050	< 0.000050
0.010	< 0.010	< 0.010
000052	0.000352	0.000106
3.44	9.28	4.1
000010	0.000174	0.000011
00018	0.00162	0.00031
.0003	0.0012	0.00025
.00050	0.00594	0.00136
0.54	3.31	0.53
000050	0.000664	0.000182
0.0010	0.0014	< 0.0010
0.793	2.35	1.27
0.117	0.258	0.180
0000050	<0.000025	<0.0000050
000095	0.000193	0.000143
.00050	0.00276	<0.00050
0.079	0.35	0.21
0.732	1.83	3.28
00049	0.00241	0.00151
00049	<0.000241	<0.00050
1.64	4.36	1.38
000010	0.000028	<0.000010
0.795	1.07	0.493
.0225	0.0655	0.0254
0.50	< 0.50	< 0.50
.00020	< 0.00020	< 0.00020
000010	0.000016	< 0.000010
.00010	< 0.00010	< 0.00010
.00010	< 0.00010	< 0.00010
00096	0.022	0.00728
.00010	< 0.00010	< 0.00010
000010	0.000022	< 0.000010
.00050	0.00306	0.00098
.0054	0.0243	0.0159
000060	< 0.00020	< 0.00020

Table 1. Hazelton Surface Water Quali	ny Data																					
		BC MoE Guidelines					SW-03														SW-0	14
		Freshwater Aquatic Life (1) (2)	Drinking Water (2) (3)																			
Parameters	Units				r - 1				T								T		T	1	T	
Date				26-Jul-04	25-May-06	10-Jun-08	16-Apr-16	7-Jul-16	25-Oct-16 814	14-Jun-17 805	26-May-06	8-Aug-07	10-Jun-08	25-Aug-09	16-Mar-10	22-Jun-10 313	30-Sep-10 504	28-Feb-12 403	14-Aug-12 826	4-Oct-12 105	27-Mar-13	17-Oct-13
Total Hardness Dissolved Hardness (CaCO3)	mg/L mg/L	-	-				1090	726	814	805					398	313	504	403	826	105	594	472
Alkalinity (Total as CaCO3)	mg/L mg/L	-	-	1.090	961	1.300	900	570	940	1.000	366	480	403	305	473	414	460	440	210	400	640	503
Total Organic Carbon (C)	mg/L	+/- 20% of background	4.0	1,070	701	1,500	43.2	29.2	33.1	34.3	500	100	105	505	113		100	110	210	100	010	505
Alkalinity (PP as CaCO3)	mg/L	-	-																		1	
Bicarbonate (HCO3)	mg/L	-	-																			
Carbonate (CO3)	mg/L	-	-																		<u> </u>	
Hydroxide (OH)	mg/L	-	-	110			202	10.5			<i>t</i> 2			105	20							21
Chemical Oxygen Demand (COD) Biological Oxygen Demand (BOD)	mg/L mg/I	-	-	119 6	146	>71	203	125	9.6	83	52	62 ND	66 6.5	185	38 ND	67 5 3	76 ND	86	52 ND	ND ND	41 ND	34 5.5
Sulphate (SO4)	mg/L mg/L	128-429 (e)	500. AO	2.9	6.7	10.5	13.1	20.8	9.6	17.8	13.3	3.4	0.5 ND	1.100	46	3.0	130	25.1	678	46.8	22.3	4.5
Chloride (Cl)	mg/L	600	250, AO	279	270	270	301	344	291	308	13.5	186	140	67	106	139	173	90	72	140	248	140
Fluoride (F)	mg/L	0.4-1.87 (e)	1.5	217	270	210	501	511	271	200	137	100	110	07	100	157	115	,,,	12	110	210	110
Total Kjeldahl Nitrogen	mg/L	-	-	28.1	22	30.7					2.9	3.3(1)	4.62(2)	2.7	3.52	2.09	1.6	1.13	1.61	1.12	1.86	1.27
Ammonia (N)	mg/L	0.681-28.7 (d)	-	27.7	24.6	9.9	17	5.42	23	24.8	1.69	1.6	3.3	1.2	2.9	ND	0.04	0.27	0.33	ND	0.07	0.06
Nitrate plus Nitrite (N)	mg/L	-	-				6.8	4.46	3.38	0.4											+	
Nitrite (N)	mg/L	0.06 -0.6 (c)	1.0	ļ	↓		0.039	0.6	0.011	0.02	l		<u> </u>	<u> </u>				I		I		\vdash
Nitrate (N)	mg/L uS/cm	32.8	10 MAC	2 620	2 160	1 970	6.76 2.350	<0.04	3.37	0.38	963	1 290	1.070	2 320	1.247	1.160	1 550	1.040	1.710	1.250	1.816	1,330
Conductivity Field Conductivity	uS/cm uS/cm	-		2,620	2,160	1,970	2,350	1,920	2,400	2,570	903	1,290	1,070	2,320	1,247	1,160	1,550	1,040	1,/10	1,250	1,816	1,330
pH	pH Units	6.5 - 9.0	7.0-10.5	7.0	7.2	7.2	7.6	7.6	7.6	7.4	7.5	7.7	7.6	7.0	7.5	7.4	7.6	7.2	7.3	7.4	7.8	7.3
Field pH	pH Units	6.5 - 9.0	7.0-10.5		1				7.0											1	1	
TSS	mg/L	25 mg/L (background 25-250 mg/l)) (i)	<500, AO																			1
Total Metals	-																					4
Total Aluminum	mg/L	0.023-0.1 (j,k) 0.009	9.5	0.080	0.380 ND	0.011	8.330 0.0015	9.020 0.0012	1.340	0.715	0.060	0.020	0.007	10.4 0.0018	0.014	0.025	0.050	7.60	0.027	0.007	0.143	0.067
Total Antimony (Ab) Total Arsenic (As)	mg/L	0.009	0.006 0.01 MAC	<0.05	ND 0.12	ND 0.003	0.0015	0.0012	0.0007	0.00031	ND ND	ND ND	ND 0.0021	0.0018	ND 0.0017	0.0003	0.0005	0.00071	0.000/1	ND 0.00036	ND 0.00057	ND 0.00372
Total Barium (Ba)	mg/L mg/L	0.003	1.0	<0.05	1.290	0.003	1.720	1.020	0.0037	0.00977	0.128	0.201	0.0021	0.0239	0.0017	0.0047	0.0032	0.00607	0.00237	0.00036	0.00037	0.00372
Total Beryllium (Be)	mg/L mg/L	0.00013	-	< 0.0002	ND	ND	0.0002	0.0002	< 0.0001	< 0.00010	ND	ND	ND	0.0003	ND	ND	ND	0.00017	0.520 ND	0.052 ND	ND	ND
Total Bismuth (Bi)	mg/L	-	-	< 0.05	ND	ND	< 0.0001	< 0.0001	< 0.0001	< 0.00010	ND	ND	ND	ND	ND	ND	ND	0.00006	ND	ND	ND	ND
Total Boron (B)	mg/L	1.2	5.0, MAC	1.9	1.94	1.31	3.33	1.98	2.4	2.94	1.02	1.31	1.3	0.993	1.01	1.54	1.39	0.69	2.03	0.255	1.17	1.16
Total Cadmium (Cd)	mg/L	0.000027 - 0.00280 (e) (k)	0.005, MAC	< 0.002	ND	0.00052	0.00067	0.00038	0.00027	0.00009	ND	ND	0.00014	0.00149	0.00014	0.00131	0.00018	0.000605	0.000279	0.000039	0.000077	0.000092
Total Calcium (Ca)	mg/L	<4 sensitive to acid input	-	240	229	101	318	214	220	228	79.8	101	93.1	514	114	74.7	145	109	248	29.9	160	134
Total Cesium (Cs)	mg/L	-	-	0.005	0.04	0.004	0.0101	0.0101	0.0004	0.00000			0.004	0.010	NE	0.0012	0.001	0.000				
Total Chromium (Cr) Total Cobalt (Co)	mg/L	0.001 (f)	0.05, MAC	<0.005	0.01 ND	0.001	0.0124	0.0104	0.0034	0.00238	ND ND	ND ND	0.001	0.012	ND 0.0018	0.0013	0.001	0.009	ND 0.00177	ND ND	ND 0.00069	ND 0.00217
Total Copper (Cu)	mg/L mg/L	0.0032-0.0396 (e)	1.0. AO	< 0.005	0.008	0.001	0.00896	0.00792	0.00346	0.00402	ND	ND	0.0007	0.0197	0.0018	0.00131	0.0028	0.00645	0.00294	0.00088	0.00089	0.00217
Total Iron (Fe)	mg/L	1	0.3, AO	51.30	102.00	0.44	154.00	86.50	8.16	16.20	0.30	0.44	0.0013	22.70	0.41	0.60	0.40	12.7	0.233	0.02	0.16	0.97
Total Lead (Pb)	mg/L	0.011-0.402 (e)	0.01	< 0.03	ND	ND	0.0215	0.016	0.0033	0.00036	ND	ND	ND	0.0122	ND	0.00044	ND	0.00515	ND	ND	ND	ND
Total Lithium (Li)	mg/L	-	-	ND	ND	ND	0.0115	0.0082	0.005	0.00358			ND	0.011	ND	ND	ND	0.0072	ND	ND	ND	ND
Total Magnesium (Mg)	mg/L	-	-	66	54.8	29.9	70.4	46.2	63.9	57.1	22.3	29.9	25.1	58.8	27.4	30.8	34.5	31.7	49.9	7.31	47.5	33.4
Total Manganese (Mn)	mg/L	0.8-3.4 (e)	0.05, AO	5.06	6.82	2.03	8.51	3.43	7.13	5.23	1.12	2.03	0.123	28.5	1.57	0.5	5.73	1.95	2.09	0.221	0.0112	2.77
Total Mercury (Hg)	mg/L.	0.0001	0.001	< 0.00005	ND	ND(1)	< 0.00002	< 0.00002	< 0.00002	< 0.00002	ND	ND	ND	ND	ND	ND	0.00023	ND	ND	ND	ND	ND
Total Molybdenum (Mo) Total Nickel (Ni)	mg/L mg/L	2 0.025-0.15 (e)	0.25	<0.005	ND ND	ND ND	0.0006	0.0005	0.0009	0.00122	ND ND	ND ND	ND 0.005	0.011	ND 0.005	0.0007	0.012	0.00182	0.0027	ND 0.0015	0.001	ND 0.0066
Total Phosphorus (P)	mg/L mg/L	0.005-0.015 (for lakes only)	0.01. AO	0.008	0.30	nD	1.78	0.0225	0.0219	0.0157	0.10	ND	0.005 ND	0.029 ND	0.005 ND	0.007 ND	0.009 ND	0.0101	0.0056	0.0015	0.0085	0.0066
Total Potassium (K)	mg/L mg/L	-	-	54	50	34	63.6	35.5	51.3	54.2	23	34	34.2	27.8	22.8	32.9	39.5	22.7	24	6.98	23	31.4
Total Rubidium (Rb)	mg/L																					1
Total Selenium (Se)	mg/L	0.002	0.01, MAC	< 0.03	ND	ND	< 0.0005	< 0.0005	< 0.0005	< 0.00050	ND	ND	ND	0.0004	ND	ND	ND	0.00017	ND	ND	0.00013	0.0001
Total Silicon (Si)	mg/L	-	· ·	< 0.01	16	6.74	34.4	26.5	12.9	14.9	4.29	6.74	3.74	19.8	5.64	4.48	8.83	16.4	6.2	1.95	4.08	9.55
Total Silver (Ag)	mg/L	0.0001-0.003 (e)	-	229	ND	0.00009	0.00013	0.00009	< 0.00005	< 0.000050	ND	ND	0.000006	ND	ND	ND	0.000013	0.000065	ND	ND	ND	ND
Total Sodium (Na) Total Strontium (Sr)	mg/L mg/I	-	<200, AO	1.62 2.3	189 1.45	0.724	289 2.03	153	233	249 1.63	98.7 0.536	126 0.724	110 0.689	64.3 2.08	93.4 0.724	132 0.637	134 0.856	72.4	71.9	24.8 0.213	164	124 0.879
Total Strontium (Sr) Total Sulphur (S)	mg/L mg/I	-	-	<0.05	1.45 4.4	0.724	2.03	1.35	1.82	7.6	0.536	0.724	0.689	2.08	0.724	0.637 ND	0.856	0.705 ND	245	0.213 ND	6.3	0.879 ND
Total Tellurium (Te)	mg/L mg/L	-	-	<0.05	4.4	1.8	9 <0.0002	<0.0002	<0.0002	<0.00020	J.1	1.8	12	408	1/	ND	44	ND	243	UN	0.5	ND
Total Thallium (TI)	mg/L mg/L	0.0008	-	< 0.03	ND	ND	0.00002	0.00002	<0.0002	<0.00020	ND	ND	ND	0.00015	ND	ND	ND	0.000064	ND	ND	ND	ND
Total Thorium (Th)	mg/L	-	<u> </u>				0.00	0.00	< 0.0001	< 0.00010												1
Total Tin (Sn)	mg/L	-	-	< 0.02	ND	ND	0.0004	0.0003	0.0003	0.00025	ND	ND	ND	ND	ND	0.0001	ND	0.0004	ND	ND	ND	ND
Total Tungsten (W)	mg/L																					
Total Titanium (Ti)	mg/L	-	-	< 0.003	ND	ND	0.172	0.189	0.035	0.021	ND	ND	ND	0.313	ND	ND	0.005	0.131	ND	ND	ND	ND
Total Uranium (U)	mg/L mg/I	0.0085	0.02	ND	ND	ND	0.00048	0.00036	0.00036	0.000548	NT:	NTD	0.0001	0.0028	0.0005 ND	0.00013	0.0017	0.000341	0.00135	0.00013	0.00346	0.00017
Total Vanadium (V) Total Zinc (Zn)	mg/L mg/L	0.033-0.34 (e)	5.0. AO	<0.005	ND 0.055	ND 0.005	0.021	0.018	0.004	0.0025	ND 0.007	ND 0.005	ND 0.008	0.023	ND 0.01	ND 0.0144	ND 0.006	0.0175	ND 0.0082	ND ND	ND ND	ND ND
Total Zinc (Zn) Total Zirconium (Zr)	mg/L mg/L		5.0, AU -	<0.005	0.055 ND	0.005 ND	0.334	0.163	0.054	0.0094	0.007 ND	0.005 ND	0.008 ND	0.131	0.01 ND	0.0144 ND	0.006 ND	0.043	0.0082 ND	ND	ND ND	ND
			1																			

A shaded value means exceeded the freshwater aquatic life criteria A shaded value means reading exceeded the drinking water quality criteria. A shaded value means exceeded both the aquatic life and drinking water criteria. A shaded value means reading had detection limit exceeding criteria.

 A shaded value means reading had detection limit exceeding criteria.

 (AO - Aesthetic Objective)

 1. BC Environment Approved and Working Criteria for Water Quality, last updated March 2018

 2. All criteria limits for BCWQG - based on Total Metal Concentration except Aluminum and Cadmium (Dissolved)

 3. BC Environment Drinking Water Guidelines and Canadian Drinking Water Standards

 c. Limit dependent on chloride concentration. (MAC - Maximum Acceptable Concentration)

 d. Limit pH and temperature dependent.

 e. Limit dependant on hardness.

 f. Limit for chronium (IV)

 g. Limit for total, no dissolved concentrations

 h.copper (mg/L) = (0.094* Hardness)/1000

 i. Limit for hardness due on total dissolved CaCO³

Limit for hardness based on total dissolved CaCO³
 J. at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
 k. Limit for dissolved metals, not total metals

Table 1. Hazelton Surface Water Qual	uity Data																								
		BC MoE Guidelines																							SW-05
		Freshwater Aquatic Life (1) (2)	Drinking Water (2) (3)																						
Parameters	Units																								
Date				7-Jul-14	25-Nov-14	26-May-15	1-Nov-15	16-Apr-16	7-Jul-16	25-Oct-16	25-Oct-16	14-Jun-17	26-Jul-04	25-May-06	8-Aug-07	10-Jun-08	25-Aug-09	16-Mar-10	22-Jun-10	30-Sep-10	28-Feb-12	14-Aug-12	4-Oct-12	27-Mar-13	17-Oct-1
Total Hardness	mg/L	-	-	352	293	292	326	549	306	359	359	394						41	46	50	43	40	46	103	49
Dissolved Hardness (CaCO3)	mg/L	-	-	336																				31	
Alkalinity (Total as CaCO3)	mg/L	-	-	415	316	310	370	530	340	370	370	420	24	21	28	22	20	21	23	32	19	23	34	45	44
Total Organic Carbon (C)	mg/L	+/- 20% of background	4.0	15.5				26.9	14.1	14.1	14.1	14.8													
Alkalinity (PP as CaCO3)	mg/L	-	-																						
Bicarbonate (HCO3)	mg/L	-	-																						
Carbonate (CO3)	mg/L	-	-																						
Hydroxide (OH)	mg/L	-	-																						
Chemical Oxygen Demand (COD)	mg/L	-	-	73	37	42	146	105	50	39	39	<20	73	61	88	74	81	53	91	64	100	120	74	126	65
Biological Oxygen Demand (BOD)	mg/L	- 128-429 (e)	- 500. AQ	ND ND	16.0 23.4	4.000	35.000	6.900 30.4	7.200	4.800	4.800	<4.0	<6	ND ND	ND ND	ND ND	ND	ND	ND ND	ND 0.8	ND ND	7.6 ND	4.2	21	ND
Sulphate (SO4)	mg/L	150 (5)	,	нв	2311	1	6.8		17.5	6.8	0.0	15.7	<0.5	. nB		112	ND	2.9	ПВ	0.0		112	ND	ND	ND
Chloride (Cl)	mg/L	600	250, AO	139	94	77	110	193	15	167	167	140	60	45	43	39	41	41	47	56	59	37	52	158	54
Fluoride (F) Total Kjeldahl Nitrogen	mg/L mg/L	0.4-1.87 (e)	1.5	1.92	1.93	1.300	7 930						0.88	0.96	1.2	0.93	0.82	0.9	1 37	13	0.72	2.16	1.42	2.83	1.21
Ammonia (N)	mg/L mg/L	0.681-28.7 (d)	-	0.45	0.12	0.250	0.067	0.190	0.550	0.120	0.120	11	0.88	0.96 ND	1.2 ND	0.95	0.82	0.05	1.37 ND	0.03	0.72	0.04	1.42 ND	0.69	0.05
Ammonia (N) Nitrate plus Nitrite (N)	mg/L mg/L	0.001-28.7 (U)		0.43	0.12 ND	0.230	0.007	3.020	0.550	0.120	0.120	0.011	0.00	ND	ND	0.04	0.05	0.05	ND	0.05	0.07	0.04	ND	0.09	0.03
Nitrate plus Nitrite (N)	mg/L mg/L	0.06 -0.6 (c)	1.0	ND	нD	1		<0.01	< 0.036	< 0.014	<0.014	<0.011		1											
Nitrate (N)	mg/L mg/L	32.8	10 MAC	ND		1		3.020	0.040	0.014	0.014	0.011		1											
Conductivity	uS/cm	-	-	1,150	895	826	1010	1530	1070	1090	1090	1,210	257	176	193	149	173	187	220	259	243	182	261	602	278
Field Conductivity	uS/cm	-	-	-,								-,													
pH	pH Units	6.5 - 9.0	7.0-10.5	7.8	7.3	7.4	7.2	7.8	7.8	7.8	7.8	7.5	6.5	6.6	6.5	6.2	6.9	6.1	6.3	6.7	5.9	6.4	6.4	5.9	6.6
Field pH	pH Units	6.5 - 9.0	7.0-10.5																						
TSS	mg/L	25 mg/L (background 25-250 mg/l)) (i)	<500, AO	8.1																					
Total Metals																									
Total Aluminum	mg/L	0.023-0.1 (j,k)	9.5		1.40	0.174	1.020	5.990	0.012	0.015	0.015	0.098	0.070	0.200	0.240	0.193	0.363	0.238	0.120	0.050	0.323	0.330	0.222	1.190	0.227
Total Antimony (Ab)	mg/L	0.009	0.006		ND	0.00020	0.00020	0.00030	0.00020	0.00040	0.00040	0.0002	<0.05	ND	ND	ND 0.0007	ND 0.001	ND	0.00008	ND	0.00006	ND	ND	ND	ND
Total Arsenic (As)	mg/L	0.005	0.01 MAC		0.00301	0.00210	0.00720	0.00180	0.00240	0.00330	0.00330	0.00286	~0.05	ND 0.014	ND 0.024	0.0007	0.001	0.0004	0.00093	0.0006	0.00058	0.00102	0.00066	0.00117	0.00055
Total Barium (Ba) Total Beryllium (Be)	mg/L mg/L	0.00013	1.0		0.137 ND	0.10400 <0.0001	0.19800	0.19000 0.00010	0.07600 <0.0001	0.20100 <0.0001	0.20100 <0.0001	0.190	0.024	0.014 ND	0.024 ND	0.018 ND	0.016 ND	0.019 ND	0.016 0.00001	0.024 ND	0.022 ND	0.020 ND	0.021 ND	0.066 ND	0.019 ND
Total Bismuth (Bi)	mg/L mg/L	0.00015	-		ND	<0.0001	<0.0001	< 0.00010	< 0.0001	< 0.0001	<0.0001	<0.00010	< 0.05	ND	ND	ND	ND	ND	0.00001 ND	ND	ND	ND	ND	ND	ND
Total Boron (B)	mg/L mg/L	1.2	5.0. MAC		0.638	0.83	0.72	1.74	1.17	0.99	0.99	1.18	<0.008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Cadmium (Cd)	mg/L	0.000027 - 0.00280 (e) (k)	0.005, MAC		0.000264	0.00034	0.00025	0.00033	0.00002	0.00003	0.00003	0.000027	< 0.002	ND	ND	0.00006	0.00002	0.00004	0.000298	ND	0.000044	0.000145	0.000023	0.000071	0.00001
Total Calcium (Ca)	mg/L	<4 sensitive to acid input	-		81.1	80.90	93.20	152.00	90.00	97.30	97.30	114	16.3	12.7	13.2	11.8	11.2	12.2	13.1	14.9	12.8	11.8	13.2	31.3	14.9
Total Cesium (Cs)	mg/L	-	-																						
Total Chromium (Cr)	mg/L	0.001 (f)	0.05, MAC		0.0018	0.00070	0.00170	0.00590	< 0.0005	< 0.0005	< 0.0005	0.00056	< 0.005	ND	ND	0.001	ND	ND	0.0008	ND	0.0008	ND	ND	0.0015	ND
Total Cobalt (Co)	mg/L	0.11	-		0.00262	0.00113	0.00536	0.00269	0.00081	0.00172	0.00172	0.00209	< 0.005	ND	ND	ND	ND	ND	0.000156	ND	0.00031	0.00083	ND	0.00157	ND
Total Copper (Cu)	mg/L	0.0032-0.0396 (e)	1.0, AO		0.00721	0.00270	0.00590	0.01840	0.00050	0.00050	0.00050	0.00063	< 0.005	ND	0.007	0.0023	0.0067	0.0021	0.0033	0.0014	0.0027	0.00232	0.00174	0.00335	0.00118
Total Iron (Fe)	mg/L	1	0.3, AO		2.46	0.56	4.22	5.31	0.24	0.83	0.83	0.98	0.62	0.42	2.13	0.50	0.67	0.60	0.31	0.79	1.11	1.18	0.61	4.25	0.73
Total Lead (Pb)	mg/L	0.011-0.402 (e)	0.01		0.00139	0.00020	0.00130	0.00320	< 0.0001	< 0.0001	< 0.0001	0.00017	< 0.03	ND	ND	ND	0.0004	0.0005	0.000188	ND	0.00027	0.0005	0.00029	0.00139	0.0002
Total Lithium (Li)	mg/L	-	-		ND	0.0015	0.0022	0.0033	0.0012	0.0016	0.0016	0.00172				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Magnesium (Mg)	mg/L	-	-		22	21.90	22.50	41.40	19.70	28.30	28.30	26.6	3.25	2.63	2.53	2.44	2.61	2.56	3.11	3.14	2.6	2.5	3.22	5.92	2.94
Total Manganese (Mn)	mg/L	0.8-3.4 (e)	0.05, AO		1.89	0.52	5.63	0.14	0.57	2.65	2.65	2.99	0.00	0.021	0.17	0.05	0.041	0.067	0.0152	0.075	0.0736	0.188	0.114	0.55	0.0755
Total Mercury (Hg) Total Molybdenum (Mo)	mg/L.	0.0001	0.001 0.25		ND ND	<0.00002 0.0005	<0.00002 0.0006	<0.00002 0.0006	<0.00002 0.0003	<0.00002 0.0010	<0.00002 0.0010	<0.00002 0.00038	<0.00005 <0.005	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.00011	ND ND	ND 0.00092	ND ND	ND ND	ND ND	ND ND
Total Nickel (Ni)	mg/L mg/L	0.025-0.15 (e)	0.25		0.007	0.0005	0.0006	0.0006	0.0003	0.0010	0.0010	0.00038	<0.005	ND	ND ND	0.001	ND ND	ND	0.00011	0.001	0.00092	ND	ND ND	0.0022	ND
Total Phosphorus (P)	mg/L mg/L	0.005-0.015 (for lakes only)	0.01. AO		0.007	0.0045	0.0000	0.0140	0.0046	0.005	0.005	0.00340	<0.1	ND	ND	0.001 ND	ND	ND	0.00098 ND	0.001 ND	0.0011	0.176	0.08	0.0022	0.058
Total Potassium (K)	mg/L mg/L	-	0.01, AO		17	18.4	19.8	24.6	18.2	23.1	23.1	22.3	<0.1	ND	ND	0.71	0.32	0.85	0.48	1.36	0.8	0.638	1.54	2.04	0.038
Total Rubidium (Rb)	mg/L mg/L	-	-		17	10.4	17.0	24.0	10.2	23.1	22.1	44.5	~1	112	112	0.71	0.52	0.05	0.70	1.50	0.0	0.050	1.57	2.04	0.040
		0.002	0.01. MAC		ND	0.00080	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.00050	< 0.03	ND	ND	ND	ND	ND	0.00006	ND	0.00007	ND	ND	ND	ND
Total Selenium (Se)	mg/L	0.002			7.68	7.3	7.5	12.8	12.2	9.5	9.5	9.9	< 0.01	0.36	0.41	0.486	0.547	2.95	ND	0.135	4.15	0.481	1.24	6.22	1.78
Total Selenium (Se) Total Silicon (Si)	mg/L mg/L	-	-		7.00				< 0.00005	< 0.00005	< 0.00005	<0.000050	32.4	ND	ND	0.000006	ND	ND	ND	ND	0.000006	ND		0.000024	ND
rotar beleinann (be)		0.002 - 0.0001-0.003 (c)	-		0.000029	< 0.00005	< 0.00005	0.00012	<0.00005	<0.00005									TLD .	ND	0.000000	ND	ND	0.000024	
Total Silicon (Si) Total Silver (Ag) Total Sodium (Na)	mg/L mg/L mg/L	-	<200, AO		0.000029 77.1	72.7	82.8	152.0	85.3	88.3	88.3	92.1	0.114	21.7	23.3	16.3	21.9	19.5	27.5	30	27.9	21	39.2	75.7	40.7
Total Silicon (Si) Total Silver (Ag) Total Sodium (Na) Total Strontium (Sr)	mg/L mg/L mg/L mg/L	-	<200, AO		0.000029 77.1 0.552	72.7 0.59	82.8 0.57	152.0 0.91	85.3 0.54	88.3 0.79	0.79	0.772	0.3	0.076	0.09	0.075	0.08	0.076	27.5 0.0924	30 0.106	27.9 0.077	21 0.0827	39.2 0.105	75.7 0.202	40.7 0.0671
Total Silicon (Si) Total Silver (Ag) Total Sodium (Na) Total Srontium (Sr) Total Suphur (S)	mg/L mg/L mg/L mg/L mg/L	-			0.000029 77.1	72.7 0.59 10.0	82.8 0.57 3.0	152.0 0.91 13.0	85.3 0.54 7.0	88.3 0.79 3.0	0.79 3.0	0.772 4.2							27.5	30	27.9	21	39.2	75.7 0.202 ND	40.7 0.0671 ND
Total Silicon (Si) Total Silvor (Ag) Total Sodium (Na) Total Strontium (Sr) Total Sulphur (S) Total Tellurium (Te)	mg/L mg/L mg/L mg/L mg/L mg/L	0.0001-0.003 (e)			0.000029 77.1 0.552 8.4	72.7 0.59 10.0 <0.0002	82.8 0.57 3.0 <0.0002	152.0 0.91 13.0 <0.0002	85.3 0.54 7.0 <0.0002	88.3 0.79 3.0 <0.0002	0.79 3.0 <0.0002	0.772 4.2 <0.00020	0.3 <0.05	0.076	0.09 0.7	0.075 ND	0.08 ND	0.076	27.5 0.0924 ND	30 0.106 ND	27.9 0.077 ND	21 0.0827 ND	39.2 0.105 ND	75.7 0.202 ND <0.0002	40.7 0.0671 ND <0.0002
Total Silicon (Si) Total Silicon (Si) Total Sodium (Na) Total Stonium (Sr) Total Stuphur (S) Total Tellurium (Te) Total Thallium (Tl)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	-			0.000029 77.1 0.552	72.7 0.59 10.0 <0.0002 <0.0002	82.8 0.57 3.0 <0.0002 <0.00002	152.0 0.91 13.0 <0.0002 0.00003	85.3 0.54 7.0 <0.0002 <0.0002	88.3 0.79 3.0 <0.0002 <0.0002	0.79 3.0 <0.0002 <0.00002	0.772 4.2 <0.00020 <0.000020	0.3	0.076	0.09	0.075	0.08	0.076	27.5 0.0924	30 0.106	27.9 0.077	21 0.0827	39.2 0.105	75.7 0.202 ND <0.0002 ND	40.7 0.0671 ND <0.0002 ND
Total Silicon (Si) Total Silor (Ag) Total Sodium (Na) Total Storium (Sr) Total Storium (Sr) Total Sulphur (S) Total Tellurium (Te) Total Thellurium (Th) Total Thorium (Th)	mg/L	0.0001-0.003 (e)			0.000029 77.1 0.552 8.4 ND	72.7 0.59 10.0 <0.0002 <0.00002 <0.0001	82.8 0.57 3.0 <0.0002 <0.0002 <0.0001	152.0 0.91 13.0 <0.0002 0.00003 0.00010	85.3 0.54 7.0 <0.0002 <0.0002 <0.0001	88.3 0.79 3.0 <0.0002 <0.0002 <0.0001	0.79 3.0 <0.0002 <0.00002 <0.0001	0.772 4.2 <0.00020 <0.000020 <0.00010	0.3 <0.05 <0.03	0.076 0.3 ND	0.09 0.7 ND	0.075 ND ND	0.08 ND ND	0.076 3 ND	27.5 0.0924 ND ND	30 0.106 ND ND	27.9 0.077 ND 0.000004	21 0.0827 ND ND	39.2 0.105 ND ND	75.7 0.202 ND <0.0002 ND <0.0001	40.7 0.0671 ND <0.0002 ND <0.000
Total Silicon (Si) Total Silicon (Si) Total Sodium (Na) Total Stodium (Sn) Total Stronium (Sr) Total Suphur (S) Total Tollurium (Te) Total Thallium (TI) Total Throium (Th) Total Tin (Sn)	mg/L	0.0001-0.003 (e)	<200, AO		0.000029 77.1 0.552 8.4	72.7 0.59 10.0 <0.0002 <0.0002	82.8 0.57 3.0 <0.0002 <0.00002	152.0 0.91 13.0 <0.0002 0.00003	85.3 0.54 7.0 <0.0002 <0.0002	88.3 0.79 3.0 <0.0002 <0.0002	0.79 3.0 <0.0002 <0.00002	0.772 4.2 <0.00020 <0.000020	0.3 <0.05	0.076	0.09 0.7	0.075 ND	0.08 ND	0.076	27.5 0.0924 ND	30 0.106 ND	27.9 0.077 ND	21 0.0827 ND	39.2 0.105 ND	75.7 0.202 ND <0.0002 ND	40.7 0.0671 ND <0.0002 ND
Total Silicon (Si) Total Solicon (Si) Total Solium (Na) Total Stonium (Sr) Total Stuphur (S) Total Tellurium (Te) Total Thorium (Th) Total Thorium (Th) Total Tin (Sn) Total Total Jungsten (W)	mg/L	0.0001-0.003 (e)			0.000029 77.1 0.552 8.4 ND ND	72.7 0.59 10.0 <0.0002 <0.0002 <0.0001 <0.0002	82.8 0.57 3.0 <0.0002 <0.0002 <0.0001 <0.0002	152.0 0.91 13.0 <0.0002 0.00003 0.00010 <0.0002	85.3 0.54 7.0 <0.0002 <0.0002 <0.0001 <0.0002	88.3 0.79 3.0 <0.0002 <0.0002 <0.0001 <0.0002	0.79 3.0 <0.0002 <0.0002 <0.0001 <0.0002	0.772 4.2 <0.00020 <0.00020 <0.00010 <0.00020	0.3 <0.05 <0.03 <0.02	0.076 0.3 ND ND	0.09 0.7 ND ND	0.075 ND ND ND	0.08 ND ND ND	0.076 3 ND ND	27.5 0.0924 ND ND 0.00003	30 0.106 ND ND ND	27.9 0.077 ND 0.000004 0.0002	21 0.0827 ND ND	39.2 0.105 ND ND	75.7 0.202 ND <0.0002 ND <0.0001 ND	40.7 0.0671 ND <0.000 ND <0.000 ND
Total Silicon (Si) Total Silicon (Si) Total Sodium (Na) Total Storitum (Sr) Total Strontium (Sr) Total Tellurium (Te) Total Thellurium (Th) Total Thorium (Th) Total Thorium (Th) Total Tungsten (W) Total Tin (Sn)	mg/L	0.0001-0.003 (e) - - - - - - - - - - - - - - - - - - -			0.000029 77.1 0.552 8.4 ND ND 0.0258	72.7 0.59 10.0 <0.0002 <0.0002 <0.0001 <0.0002 <0.0002	82.8 0.57 3.0 <0.0002 <0.0002 <0.0001 <0.0002 0.014	152.0 0.91 13.0 <0.0002 0.00003 0.00010 <0.0002 0.084	85.3 0.54 7.0 <0.0002	88.3 0.79 3.0 <0.0002 <0.0002 <0.0001 <0.0002 <0.0002	0.79 3.0 <0.0002 <0.0002 <0.0001 <0.0002 <0.0002	0.772 4.2 <0.00020 <0.000020 <0.00010 <0.00020 <0.00050	0.3 <0.05 <0.03	0.076 0.3 ND	0.09 0.7 ND	0.075 ND ND ND	0.08 ND ND ND 0.01	0.076 3 ND ND	27.5 0.0924 ND 0.00003 0.0013	30 0.106 ND ND ND ND	27.9 0.077 ND 0.000004 0.0002 ND	21 0.0827 ND ND 0.0064	39.2 0.105 ND ND ND	75.7 0.202 ND <0.0002 ND <0.0001 ND 0.0156	40.7 0.0671 ND <0.000 ND <0.000 ND ND
Total Silicon (Si) Total Silicon (Si) Total Sodium (Na) Total Stodium (Na) Total Stronium (Sr) Total Suphur (S) Total Tellurium (Te) Total Thallium (TI) Total Thonum (Th) Total Tin (Sn) Total Tingsten (W) Total Tinanum (U)	mg/L	0.0001-0.003 (e)			0.000029 77.1 0.552 8.4 ND ND 0.0258 0.00036	72.7 0.59 10.0 <0.0002 <0.0001 <0.0002 <0.0002 <0.005 0.0002	82.8 0.57 3.0 <0.0002 <0.0001 <0.0002 0.014 0.0002	152.0 0.91 13.0 <0.0002 0.00003 0.00010 <0.0002 0.084 0.0024	85.3 0.54 7.0 <0.0002	88.3 0.79 3.0 <0.0002 <0.0002 <0.0001 <0.0002 <0.0002 <0.005 0.0003	0.79 3.0 <0.0002 <0.0002 <0.0001 <0.0002 <0.0002 <0.005 0.0003	0.772 4.2 <0.00020 <0.000020 <0.00010 <0.00020 <0.0050 0.000207	0.3 <0.05 <0.03 <0.02 <0.003	0.076 0.3 ND ND ND	0.09 0.7 ND ND ND	0.075 ND ND ND ND ND	0.08 ND ND 0.01 ND	0.076 3 ND ND ND ND	27.5 0.0924 ND 0.00003 0.00003 0.0013 0.000007	30 0.106 ND ND ND ND	27.9 0.077 ND 0.00004 0.0002 ND 0.000014	21 0.0827 ND ND ND 0.0064 ND	39.2 0.105 ND ND ND ND ND	75.7 0.202 ND <0.0002 ND <0.0001 ND 0.0156 ND	40.7 0.0671 ND <0.0002 ND <0.0000 ND ND ND
Total Silicon (Si) Total Silicon (Si) Total Stodium (Na) Total Strontium (Sr) Total Strontium (Sr) Total Tellurium (Te) Total Theorium (Te) Total Tingsten (W) Total Titanium (Ti) Total Uranium (U) Total Vanadium (V)	mg/L mg/L	0.0001-0.003 (e) 			0.000029 77.1 0.552 8.4 ND ND 0.0258 0.00036 ND	72.7 0.59 10.0 <0.0002 <0.0002 <0.0001 <0.0002 <0.0002 <0.005 0.0002 <0.001	82.8 0.57 3.0 <0.0002 <0.0002 <0.0001 <0.0002 0.014 0.0002 0.003	152.0 0.91 13.0 <0.0002 0.0003 0.00010 <0.0002 0.084 0.0024 0.009	85.3 0.54 7.0 <0.0002	88.3 0.79 3.0 <0.0002 <0.0001 <0.0001 <0.0002 <0.0001 <0.0003 <0.0003	0.79 3.0 <0.0002 <0.0001 <0.0002 <0.0002 <0.0002 <0.0003 <0.001	0.772 4.2 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.0050 0.000207 <0.0010	0.3 <0.05 <0.03 <0.02 <0.003 <0.005	0.076 0.3 ND ND ND ND	0.09 0.7 ND ND ND	0.075 ND ND ND ND ND ND	0.08 ND ND 0.01 ND ND	0.076 3 ND ND ND ND ND	27.5 0.0924 ND 0.00003 0.0013 0.00007 ND	30 0.106 ND ND ND ND ND ND	27.9 0.077 ND 0.000004 0.0002 ND 0.000014 0.0007	21 0.0827 ND ND 0.0064 ND ND	39.2 0.105 ND ND ND ND ND ND	75.7 0.202 ND <0.0002 ND <0.0001 ND 0.0156 ND ND	40.7 0.0671 ND <0.0002 ND <0.0000 ND ND ND ND
Total Silicon (Si) Total Silicon (Si) Total Sodium (Na) Total Strohuim (Sr) Total Strohuim (Sr) Total Suphur (S) Total Thellurium (Te) Total Thoium (Th) Total Thoium (Th) Total Tingsten (W) Total Tinahum (Ti) Total Uranium (U)	mg/L	0.0001-0.003 (e) - - - - - - - - - - - - - - - - - - -			0.000029 77.1 0.552 8.4 ND ND 0.0258 0.00036	72.7 0.59 10.0 <0.0002 <0.0001 <0.0002 <0.0002 <0.005 0.0002	82.8 0.57 3.0 <0.0002 <0.0001 <0.0002 0.014 0.0002	152.0 0.91 13.0 <0.0002 0.00003 0.00010 <0.0002 0.084 0.0024	85.3 0.54 7.0 <0.0002	88.3 0.79 3.0 <0.0002 <0.0002 <0.0001 <0.0002 <0.0002 <0.005 0.0003	0.79 3.0 <0.0002 <0.0002 <0.0001 <0.0002 <0.0002 <0.005 0.0003	0.772 4.2 <0.00020 <0.000020 <0.00010 <0.00020 <0.0050 0.000207	0.3 <0.05 <0.03 <0.02 <0.003	0.076 0.3 ND ND ND	0.09 0.7 ND ND ND	0.075 ND ND ND ND ND	0.08 ND ND 0.01 ND	0.076 3 ND ND ND ND	27.5 0.0924 ND 0.00003 0.00003 0.0013 0.000007	30 0.106 ND ND ND ND	27.9 0.077 ND 0.00004 0.0002 ND 0.000014	21 0.0827 ND ND 0.0064 ND	39.2 0.105 ND ND ND ND ND	75.7 0.202 ND <0.0002 ND <0.0001 ND 0.0156 ND	40.7 0.0671 ND <0.0002 ND <0.0000 ND ND ND

A shaded value means exceeded the freshwater aquatic life criteria A shaded value means reading exceeded the drinking water quality criteria. A shaded value means exceeded both the aquatic life and drinking water criteria. A shaded value means reading had detection limit exceeding criteria.

 A shaded value means reading had detection limit exceeding criteria.

 (AO - Aesthetic Objective)

 1. BC Environment Approved and Working Criteria for Water Quality, last updated March 2018

 2. All criteria limits for BCWQG - based on Total Metal Concentration except Aluminum and Cadmium (Dissolved)

 3. BC Environment Drinking Water Guidelines and Canadian Drinking Water Standards

 c. Limit dependent on chloride concentration.

 (MAC - Maximum Acceptable Concentration)

 d. Limit pH and temperature dependent.

 e. Limit dependant on hardness.

 f. Limit for othornium (IV)

 g. Limit for total, no dissolved concentrations

 h.copper (mgL) = (0.094* Hardness)/1000

 i. Limit brackness de an etral disclosed CaCO³

i. Limit for hardness based on total dissolved CaCO³ j. at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L. k. Limit for dissolved metals, not total metals

	, I	BC MoE Guidelines																	S	W-06			
		Freshwater Aquatic Life (1) (2)	Drinking Water (2) (3)																				
Parameters	Units							-	-								-		-				
Date				7-Jul-14	25-Nov-14	26-May-15		16-Apr-16	7-Jul-16	25-Oct-16	24-Apr-17	14-Jun-17	28-May-18	13-Aug-19	21-Nov-19	16-Apr-16	7-Jul-16	25-Oct-16	24-Apr-17	14-Jun-17	28-May-18	13-Aug-19	21-Nov-1
Fotal Hardness	mg/L	-	-	38	59	33	42	35	46	33	33	51	32	50	36	31	51	34	32	30	36	276	28
Dissolved Hardness (CaCO3)	mg/L	-	-	48																			_
Alkalinity (Total as CaCO3)	mg/L	-	-	17	35	16	23	17	22	21	21	34			20	12	26	16	18	11		<u> </u>	15
Fotal Organic Carbon (C)	mg/L	+/- 20% of background	4.0	24.9				35.5	30.4	40.6	23.0	23.7			41.1	42.7	57.7	39.3	20.6	48.6		<u> </u>	37.2
Alkalinity (PP as CaCO3) Bicarbonate (HCO3)	mg/L mg/L	-	-			-																	-
Carbonate (CO3)	mg/L mg/L	-	-			1											-					<u> </u>	-
Hydroxide (OH)	mg/L mg/L		-																				
Chemical Oxygen Demand (COD)	mg/L mg/L	-	-	69	71	83	107	87	70	86	74	80	69	59	100	94	128	165	62	98	113	49	94
Biological Oxygen Demand (BOD)	mg/L	-	-	ND	8.5	6.800	<4.0	<5.0	<4.0	<4.0	<4.0	<4.0	2.5	2.1		<5.0	<4.0	<4.0	<4.0	<4.0	<2.0	<2.0	
Sulphate (SO4)	mg/L	128-429 (e)	500, AO	ND	ND (1)	<1.0	2.1	<1.0	<1.0	<1.0	<1.0	1.4	< 0.30	< 0.30	0.55	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.30	<3.0	0.64
Chloride (Cl)	mg/L	600	250, AO	34	58	34	33	29	52	24	29	30	16	49	25	28	33	31	31	28	27	634	13
Fluoride (F)	mg/L	0.4-1.87 (e)	1.5										0.040	0	0.024						0.035	< 0.20	0.027
Total Kjeldahl Nitrogen	mg/L	-	-	1.03	1.43	1.080	1.220								1.52								1.78
Ammonia (N)	mg/L	0.681-28.7 (d)	-	0.04	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.039	< 0.03	0.0085	0.0123	0.046	0.030	0.053	< 0.03	0.310	0.1	0.138	0.0156	0.049
Nitrate plus Nitrite (N)	mg/L	-	-		ND			< 0.010	0.011	0.014	0.013	0.014	< 0.0060			0.020	0.046	0.016	0.090	0.035	0.1152	<u> </u>	<u> </u>
Nitrite (N)	mg/L	0.06 -0.6 (c)	1.0	ND	I			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0010	< 0.0010	< 0.0010	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	0.0042	< 0.010	< 0.0010
Nitrate (N)	mg/L	32.8	10 MAC	ND	071	126	1/2	<0.01	0.010	0.014	0.013	0.014	< 0.0050	0.0059	< 0.0050	0.020	0.050	0.016	0.090	0.035	0.111	< 0.050	0.0681
Conductivity Field Conductivity	uS/cm uS/cm	-	-	162	271	136	162	130	219	119	152	170	107		132	121	173	132	153	128	531	╂─────	
rield Conductivity	pH Units	6.5 - 9.0	7.0-10.5	65	6.0	63	6.1	6.4	63	67	63	6.6	107	7.2	7	6.1	64	65	5.9	59	531	7 74	7.12
Field pH	pH Units	65-90	7.0-10.5	0.5	0.0	0.5	0.1	0.4	0.3	0.7	0.5	0.0	6.2	6.4	/	0.1	0.4	0.5	5.9	5.9	6.2	6.5	7.12
TSS	mg/L	25 mg/L (background 25-250 mg/l)) (i)	<500. AO	3.8									0.2	0.4							0.2	0.5	4
Total Metals			000,110																				
Total Aluminum	mg/L	0.023-0.1 (j,k)	9.5		0.345	0.258	0.267	0.216	0.102	0.301	0.238	1.420	0.619	0.197	0.576	0.190	0.249	0.273	0.258	0.221	0.333	0.012	0.639
Total Antimony (Ab)	mg/L	0.009	0.006		ND	0.00010	< 0.0001	< 0.0001	< 0.0001	0.00020	< 0.00010	0.00018	< 0.00010	< 0.00010	0.0001	< 0.0001	< 0.0001	0.00020	< 0.00010	< 0.00010	< 0.00010	0.00017	0.00012
Total Arsenic (As)	mg/L	0.005	0.01 MAC		0.0008	0.00060	< 0.0005	0.00060	0.00070	0.00060	0.00094	0.0021	0.00224	0.00142	0.00069	0.00050	0.00140	0.00080	0.00057	0.00088	0.00154	0.00064	0.00052
Total Barium (Ba)	mg/L	1	1.0		0.031	0.01100	0.01500	0.01000	0.02300	0.01500	0.01790	0.033	0.019	0.024	0.017	0.01000	0.01800	0.01600	0.01600	0.012	0.014	0.174	0.014
Total Beryllium (Be)	mg/L	0.00013	-		ND	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Total Bismuth (Bi)	mg/L	-	-		ND	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.000050	< 0.000050	< 0.000050	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.000050	< 0.000050	< 0.000050
Total Boron (B)	mg/L	1.2	5.0, MAC		ND	0.00900	0.00600	0.00700	0.00800	0.09100	0.01000	0.038	< 0.010	< 0.010	< 0.010	< 0.004	0.01000	0.02700	< 0.004	0.005	< 0.010	< 0.010	< 0.010
Total Cadmium (Cd) Total Calcium (Ca)	mg/L mg/L	0.000027 - 0.00280 (e) (k) <4 sensitive to acid input	0.005, MAC		0.000021 17.4	0.00009 9.4	0.00002 12.5	0.00021 10.1	<0.00001 14.5	0.00004 9.4	0.000011 9.8	0.000025	0.0000202 9.42	0.0000072 15.1	0.0000147 10.6	0.00004 8.7	0.00002 15.6	0.00005 9.5	0.00001 9.4	0.000016 8.45	0.0000239 10.2	<0.0000050 88.3	0.0000217
Total Cesium (Ca)	mg/L mg/L	<4 sensitive to acid input	-		17.4	9.4	12.5	10.1	14.5	9.4	9.8	15	9.42	0.000016	0.00003	8.7	15.0	9.5	9.4	8.45	0.00002	<0.000010	9.0
Total Chromium (Cr)	mg/L mg/L	0.001 (f)	0.05. MAC		ND	0.0005	0.0006	0.0005	<0.0005	0.0006	0.0005	0.00168	0.000037	0.00018	0.00005	<0.0005	0.0006	0.0006	<0.00050	<0.00050	0.00051	<0.00010	0.000013
Total Cobalt (Co)	mg/L mg/L	0.001 (1)	0.05, MAC		0.00125	0.0001	0.0003	0.0001	0.0002	0.0002	0.0005	0.00108	0.00098	0.00043	0.00025	0.0003	0.0008	0.0004	0.0005	0.00049	0.00106	0.00119	0.00019
Total Copper (Cu)	mg/L	0.0032-0.0396 (e)	1.0, AO		0.00227	0.0028	0.0016	0.0036	0.0004	0.0016	0.0023	0.00452	0.00214	0.00084	0.00265	0.0019	0.0010	0.0010	0.0022	0.00073	0.00108	< 0.00050	0.00377
Total Iron (Fe)	mg/L	1	0.3. AO		2.1	0.43	0.82	0.42	0.54	0.65	0.86	2.46	1.62	1.00	0.91	0.65	1.74	0.97	0.68	0.80	1.65	0.97	0.52
Total Lead (Pb)	mg/L	0.011-0.402 (e)	0.01		0.00032	0.00010	0.00010	0.00030	< 0.0001	0.00010	0.00030	0.00163	0.000597	0.000231	0.000239	0.00040	0.00040	0.00030	0.00016	0.00022	0.000711	< 0.000050	0.000167
Total Lithium (Li)	mg/L	-	-		ND	0.00030	0.00030	0.00020	0.00030	0.00030	0.00020	0.0011	< 0.0010	< 0.0010	< 0.0010	0.00030	0.00040	0.00040	0.00031	0.00029	< 0.0010	< 0.0010	< 0.0010
Total Magnesium (Mg)	mg/L	-	-		3.71	2.39000	2.68000	2.33000	2.28000	2.31000	2.16000	3.34	2.13	3.02	2.51	2.29000	2.97000	2.57000	1.98000	2.1	2.5	13.5	1.7
Total Manganese (Mn)	mg/L	0.8-3.4 (e)	0.05, AO		0.653	0.03240	0.07060	0.026	0.060	0.031	0.132	0.172	0.236	0.105	0.0283	0.060	0.183	0.100	0.115	0.128	0.304	1.37	0.0225
Total Mercury (Hg)	mg/L.	0.0001	0.001		ND	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.0000050	< 0.0000050	0.0000088	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.0000050	< 0.0000050	0.0000184
Total Molybdenum (Mo)	mg/L	2	0.25		ND	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.00010	0.00018	0.00023	0.000107	< 0.000050	0.000089	< 0.0001	0.00010	0.00020	0.00014	0.00015	0.000097	0.000201	0.00009
Total Nickel (Ni)	mg/L	0.025-0.15 (e)	-		0.0014	0.00090	0.00130	0.00100	0.00050	0.00080	0.00097	0.00248	0.00164	0.00093	0.00116	0.00070	0.00080	0.00080	0.00092	0.00056	0.00111	0.00098	0.00128
Total Phosphorus (P)	mg/L	0.005-0.015 (for lakes only)	0.01, AO		0.087	0.0490	0.0300	<0.02	0.0300	<0.02	0.077	0.069	0.083	0.052	<0.050	<0.02	0.050	<0.02	< 0.050	<0.050	0.119	< 0.050	0.053
Total Potassium (K) Total Rubidium (Rb)	mg/L mg/L	-	-		1.18	0.52	0.39	0.51	0.11	0.48	2.47	1.26	1.09 0.00091	0.408 0.00048	0.665	0.35	0.40	0.23	1.61	0.81	0.56 0.00076	3.92 0.00116	0.473
Total Selenium (Se)	mg/L mg/L	0.002	0.01. MAC		ND	0.00060	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.00050	< 0.00050	0.00091	0.00048	0.0005	< 0.0005	<0.0005	< 0.0005	<0.00050	< 0.00050	0.00076	0.00116	0.00032
Total Silicon (Si)	mg/L	0.002	0.01, MAC		3.19	1.40	< 0.0003	1.10	0.60000	2.90	1.60	<0.00030	2.35	1	3.99	2.50	3.50	3 20	2.10	2.4	2.31	3.5	4.99
Total Silver (Ag)	mg/L mg/L	0.0001-0.003 (e)	-		0.000026	<0.00005	<0.00005	< 0.00005	< 0.00005	<0.00005	<0.000050	<0.000050	<0.000010	<0.000010	0.000014	<0.00005	<0.00005	<0.00005	<0.000050	<0.000050	<0.000010	<0.000010	0.000027
Total Sodium (Na)	mg/L	-	<200. AO		29.8	16.2	15.0	16.5	21.9	11.7	16.7	13.6	9.11	20.9	13.6	13.3	15.7	14.8	15.5	13	14.7	332	8
Total Strontium (Sr)	mg/L	-	-		0.108	0.063	0.068	0.057	0.09000	0.070	0.064	0.0931	0.0649	0.103	0.068	0.054	0.082	0.075	0.059	0.0573	0.0696	0.566	0.0548
Total Sulphur (S)	mg/L	-	-		ND	4.00000	<1	<1	1.00000	<1	<3.0	<3.0	< 0.50	< 0.50	< 0.50	<1	1.0	<1	<3.0	<3.0	< 0.50	1.12	0.66
Total Tellurium (Te)	mg/L		-		1	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.0002	< 0.0002	< 0.0002	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Total Thallium (TI)	mg/L	0.0008	-		ND	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.000020	< 0.000020	< 0.000010	< 0.000010	< 0.000010	< 0.00002	< 0.00002	< 0.00002	< 0.000020	< 0.000020	< 0.000010	< 0.000010	< 0.00001
Total Thorium (Th)	mg/L	-	-			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010
	mg/L	-	-		ND	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.00020	< 0.00020	< 0.00010	< 0.00010	< 0.00010	< 0.0002	< 0.0002	< 0.0002	< 0.00020	< 0.00020	< 0.00010	< 0.00010	< 0.00010
Fotal Tin (Sn)					1	1					1		0.00853	< 0.0039	0.00702						0.00438	< 0.00030	0.00655
Total Tungsten (W)	mg/L																				0.00.00		
Total Tungsten (W) Total Titanium (Ti)	mg/L	-	-		ND	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0050	0.0231	< 0.00010	< 0.00010	< 0.00010	< 0.005	< 0.005	< 0.005	< 0.0050	< 0.0050	< 0.00010	< 0.00010	< 0.00010
Total Tungsten (W) Total Titanium (Ti) Total Uranium (U)	mg/L mg/L	0.0085	- 0.02		ND	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.000020	0.000028	0.000017	< 0.000010	0.000023	< 0.00002	< 0.00002	< 0.00002	0.00003	< 0.000020	0.000011	0.000022	0.000037
Total Tungsten (W) Total Titanium (Ti)	mg/L	0.0085	- 0.02 									010201											

		A shade
		A shade
		A shade

A shaded value means exceeded the freshwater aquatic life criteria A shaded value means reading exceeded the drinking water quality criteria. A shaded value means exceeded both the aquatic life and drinking water criteria. A shaded value means reading had detection limit exceeding criteria.

 A shaded value means reading had detection limit exceeding criteria.

 (AO - Aesthetic Objective)

 1. BC Environment Approved and Working Criteria for Water Quality, last updated March 2018

 2. All criteria limits for BCWQG - based on Total Metal Concentration except Aluminum and Cadmium (Dissolved)

 3. BC Environment Drinking Water Guidelines and Canadian Drinking Water Standards

 c. Limit dependent on chloride concentration.

 (MAC - Maximum Acceptable Concentration)

 d. Limit pH and temperature dependent.

 e. Limit dependant on hardness.

 f. Limit for total, no dissolved concentrations

 h. copper (mg/L) = (0.094* Hancess)/1000

 i. Limit for hardness based on total dissolved CaCO³

i. Limit for hardness based on total dissolved CaCO³ j. at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L. k. Limit for dissolved metals, not total metals

Table 1. Hazelton Surface Water Quali	ity Data																				
		BC MoE Guidelines										SW-	-07								
		Freshwater Aquatic Life (1) (2)	Drinking Water (2) (3)																		
Parameters	Units																				
Date				26-Jul-04	8-Aug-07	25-Aug-09	16-Mar-10	22-Jun-10	30-Sep-10	28-Feb-12	14-Aug-12	4-Oct-12	27-Mar-13	17-Oct-13	16-Apr-16	7-Jul-16	25-Oct-16	24-Apr-17	14-Jun-17	28-May-18	21-Nov-19
Total Hardness	mg/L	-	-				44	112	307	32	165	19	64	51	42	74	40	38	42	52	38
Dissolved Hardness (CaCO3)	mg/L	-	-										16								
Alkalinity (Total as CaCO3) Total Organic Carbon (C)	mg/L	- - / 200/ -fbb	4.0	132	38	174	14	63	200	10	92	18	33	19	31	67 14.2	33	33	44		30 28.5
Alkalinity (PP as CaCO3)	mg/L mg/L	+/- 20% of background	4.0									1			50.2	14.2	21.9	15.5	15.8		28.3
Bicarbonate (HCO3)	mg/L		_									1									<u> </u>
Carbonate (CO3)	mg/L	-	-																		
Hydroxide (OH)	mg/L	-	-																		
Chemical Oxygen Demand (COD)	mg/L	-	-	54	114	246	84	140	71	95	112	120	101	144	69	36	67	<20	53	42	70
Biological Oxygen Demand (BOD)	mg/L	-	-	<6	ND	11	ND	ND	ND	ND	8.9	4.9	7.3	ND	<5.0	<4.0	<4.0	<4.0	<4.0	<2.0	
Sulphate (SO4) Chloride (Cl)	mg/L	128-429 (e) 600	500, AO 250, AO	5.6 405	ND 49	15.0 590	ND 39	1.1 84	22.0	ND 27	ND 240	ND (1) 42	ND 73	ND 29	<1.0 24	2.5 63	<1.0	<1.0 24	<1.0	1.8	2.23 18
Fluoride (F)	mg/L mg/L	0.4-1.87 (e)	250, AO	405	49	390	39	04	333	21	240	42	73	29	24	03	19	24	10	0.033	0.029
Total Kjeldahl Nitrogen	mg/L	-	-	1.25	1.92	1.18	0.96	1.97	0.9	0.71	1.46	1.61	1.16	1.65						0.055	1.84
Ammonia (N)	mg/L	0.681-28.7 (d)	-	0.05	ND	0.3	ND	0.07	0.07	0.09	0.06	0.11	0.12	0.04	< 0.03	0.037	< 0.03	0.032	< 0.03	0.0155	0.047
Nitrate plus Nitrite (N)	mg/L	-	-												< 0.010	0.019	0.012	0.043	0.012	< 0.105	
Nitrite (N)	mg/L	0.06 -0.6 (c)	1.0												< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0010	< 0.0010
Nitrate (N)	mg/L	32.8	10 MAC	1.000	000	0.050	1/2	421	1.510	110	1.000	101	212	1.17	< 0.01	0.02	0.012	0.043	0.012	0.0095	0.0314
Conductivity Field Conductivity	uS/cm uS/cm	-	-	1,480	230	2,050	163	421	1,540	118	1,020	196	313	147	132	327	122	142	124	109	126
nHaa Conductivity	pH Units	6.5 - 9.0	7.0-10.5	7.0	6.4	6.7	5.8	6.2	7.0	5.8	6.6	6.1	6.5	6.2	7.1	7.1	7.1	6.4	7.0	6.4	7.5
Field pH	pH Units	6.5 - 9.0	7.0-10.5	7.0	0.4	0.7	5.0	0.2	7.0	5.0	0.0	0.1	0.5	0.2	7.1	7.1	7.1	0.4	7.0	0.4	1.55
TSS	mg/L	25 mg/L (background 25-250 mg/l)) (i)	<500, AO																		
Total Metals																					4
Total Aluminum	mg/L	0.023-0.1 (j,k)	9.5	0.060	0.850	3.84	0.27	0.38	0.58	0.25	0.94	0.18	1.32	1.27	0.64	1.10	0.58	0.32	0.328	0.620	1.140
Total Antimony (Ab) Total Arsenic (As)	mg/L mg/L	0.009 0.005	0.006 0.01 MAC	<0.05 <0.05	ND ND	0.0009	ND 0.0005	0.00015 0.00191	ND 0.0023	ND 0.00058	ND 0.00748	ND 0.00037	ND 0.0013	ND 0.00341	0.0001	0.0001 0.0015	0.0003	<0.00010 <0.00050	0.0001 0.00054	0.0001	0.00012
Total Barium (Ba)	mg/L mg/L	1	1.0	0.129	0.052	0.695	0.0003	0.00191	0.173	0.00038	0.173	0.00037	0.0015	0.00341	0.000	0.0015	0.0007	0.014	0.00034	0.0009	0.00072
Total Beryllium (Be)	mg/L	0.00013	-	< 0.0002	ND	0.0001	ND	0.00003	ND	ND	ND	ND	ND	ND	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.0010	< 0.00010	< 0.00010
Total Bismuth (Bi)	mg/L	-	-	< 0.05	ND	ND	ND	0.000011	ND	ND	ND	ND	ND	ND	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.000050	< 0.000050
Total Boron (B)	mg/L	1.2	5.0, MAC	0.01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.028	0.014	0.039	0.026	0.048	0.024	0.038
Total Cadmium (Cd)	mg/L	0.000027 - 0.00280 (e) (k)	0.005, MAC	< 0.002	0.002	0.00041	0.00019	0.000212	0.00008	0.000052	0.000296	0.000021	0.000077	0.000066	0.00011	0.00005	0.00005	0.000011	< 0.000010	0.0000151	0.0000286
Total Calcium (Ca)	mg/L	<4 sensitive to acid input	-	77.6	21.9	130	12	34.3	98	9	53.6	5.61	18.7	14.7	11.9	22.6	11.1	10.6	12	14.5 0.000053	11.7
Total Cesium (Cs) Total Chromium (Cr)	mg/L mg/L	0.001 (f)	0.05, MAC	< 0.005	ND	0.005	ND	0.0015	0.002	0.0007	0.0015	ND	0.002	0.0019	0.0009	0.0013	0.0009	0.00055	0.00055	0.000053	0.00008 0.00112
Total Cobalt (Co)	mg/L	0.001(1)		<0.005	0.007	0.0233	0.0005	0.00707	0.0015	0.00049	0.00651	ND	0.00188	0.0019	0.00024	0.00125	0.0003	0.00017	0.00017	0.00067	0.00036
Total Copper (Cu)	mg/L	0.0032-0.0396 (e)	1.0, AO	< 0.005	0.006	0.0156	0.0023	0.00512	0.0045	0.0021	0.00464	0.00128	0.00914	0.00289	0.0058	0.003	0.004	0.00237	0.00207	0.00233	0.00384
Total Iron (Fe)	mg/L	1	0.3, AO	1.37	10.90	180.00	0.58	4.20	17.00	1.12	15.70	0.49	2.84	8.57	0.57	2.17	0.60	0.34	0.27	0.84	1.04
Total Lead (Pb)	mg/L	0.011-0.402 (e)	0.01	< 0.03	ND	0.0119	0.0003	0.00092	0.0011	0.00053	0.00191	0.00026	0.00202	0.00213	0.0008	0.0015	0.0002	0.00012	< 0.00010	0.000278	0.000252
Total Lithium (Li)	mg/L	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0003	0.0007	0.0003	0.00016	0.00013	< 0.0010	< 0.0010
Total Magnesium (Mg)	mg/L	-	-	11.1	4.1	16.3	3.29	6.48	15.1	2.4	7.47	1.32	4.3	3.34	2.88	4.18	2.86	2.72	2.94	3.71	2.9
Total Manganese (Mn) Total Mercury (Hg)	mg/L mg/L.	0.8-3.4 (e) 0.0001	0.05, AO 0.001	0.421 <0.00005	1.78 ND	4.49 ND	0.218 ND	2.47 ND	0.648 ND	0.143	5.16 ND	0.0465 ND	0.433 ND	0.344 ND	0.0177	0.329 <0.00002	0.0264	0.0231	0.0293	0.222	0.0153 0.0000124
Total Molybdenum (Mo)	mg/L. mg/L	2	0.001	< 0.0005	ND	0.002	ND	0.00022	ND	0.000021	ND	ND	ND	ND	<0.0001	0.0002	<0.0002	0.00012	<0.00002	<0.0000030	0.000124
Total Nickel (Ni)	mg/L mg/L	0.025-0.15 (e)	-	<0.008	ND	0.002	0.001	0.002266	0.002	0.0008	0.0023	ND	0.0023	0.002	0.0016	0.002	0.0015	0.00109	0.00107	0.00167	0.00199
Total Phosphorus (P)	mg/L	0.005-0.015 (for lakes only)	0.01, AO	<0.1	0.1	ND	ND	ND	ND		0.23	0.03	0.08	0.15	0.02	0.09	0.03	< 0.050	< 0.050	< 0.050	0.05400
Total Potassium (K)	mg/L	-	-	2.00	ND	1.94	1.24	0.55	2.34	ND	1.36	0.302	0.962	0.53	1.06	1.09	0.74	1.37	1.19	1.1	0.9
Total Rubidium (Rb)	mg/L	0.000	0.01 1/10	0.00		0.0004	100	0.00005		0.0000.5				0.0004 -	0.000-	0.000-	0.000-	0.0005-	0.0005-	0.00072	0.00087
Total Selenium (Se)	mg/L	0.002	0.01, MAC	<0.03	ND	0.0001	ND 2.16	0.00009	ND	0.00006	ND	ND	ND	0.00016	<0.0005	< 0.0005	< 0.0005	< 0.00050	<0.00050	0.000098	0.000108
Total Silicon (Si) Total Silver (Ag)	mg/L mg/L	- 0.0001-0.003 (e)	-	<0.01	4.63 ND	11.8	3.16 ND	3.27 0.000006	4.7 0.00002	3.78 0.000006	5.2 0.000027	1.29 ND	5.15 0.000022	4.61 ND	3.9 <0.00005	5.7 <0.00005	4.1 <0.00005	3	3.8 <0.000050	4.6 <0.000020	5.19 0.000028
Total Solium (Na)	mg/L mg/L	-	<200. AO	0.444	25.4	253	15.3	44.1	176	11.2	134	8.68	32.4	15.9	<0.00005	<0.00005	<0.00005	<0.000050	<0.000050	<0.000020	11.1
Total Strontium (Sr)	mg/L	-	-	2.4	0.136	0.767	0.075	0.207	0.624	0.0556	0.352	0.041	0.122	0.0924	0.072	0.115	0.082	0.0687	0.0766	0.0953	0.0724
Total Sulphur (S)	mg/L	-	-	< 0.05	0.9	9.0	3.0	ND	5.0	ND	ND	ND	ND	ND	<1	2.0	<1	<3.0	<3.0	< 0.50	1.01
Total Tellurium (Te)	mg/L		-												< 0.0002	< 0.0002	< 0.0002	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Total Thallium (Tl)	mg/L	0.0008	-	< 0.03	ND	ND	ND	0.000003	ND	0.000003	ND	ND	ND	ND	< 0.00002	< 0.00002	< 0.00002	< 0.000020	< 0.000020	< 0.000010	< 0.000010
Total Thorium (Th)	mg/L	-	-				100	0.00005		-					< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Total Tin (Sn)	mg/L	-	-	< 0.02	ND	ND	ND	0.00002	ND	ND	ND	ND	ND	ND	< 0.0002	< 0.0002	< 0.0002	< 0.00020	< 0.00020	<0.00010	<0.00010
Total Tungsten (W) Total Titanium (Ti)	mg/L mg/L		+	< 0.003	0.009	0.081	ND	0.0055	0.007	ND	0.0121	ND	0.0266	0.019	0.007	0.016	0.006	0.0055	< 0.0050	<0.0104	0.0129 <0.00010
Total Uranium (U)	mg/L mg/L	0.0085	0.02	<0.003 ND	0.009 ND	0.0003	ND	0.00007	0.0002	0.000009	0.0121 ND	ND	0.0200 ND	0.019 ND	0.00003	0.00004	0.00003	0.000024	0.000026	0.000025	0.000042
Total Vanadium (V)	mg/L	-	-	<0.005	0.006	0.025	ND	0.0022	0.0002 ND	0.0007	ND	ND	ND	ND	0.00005	0.0004	< 0.001	< 0.0010	< 0.0010	0.00136	0.000042
Total Zinc (Zn)	mg/L	0.033-0.34 (e)	5.0, AO	< 0.005	0.038	0.186	0.013	0.0148	0.028	0.005	0.033	ND	0.0243	0.0181	0.01	0.007	< 0.004	< 0.0040	< 0.0040	0.01	0.0049
Total Zirconium (Zr)	mg/L			< 0.005	ND	0.0006	ND	0.0005	ND	0.0002	ND	ND	ND	ND	0.0007	0.0006	0.0004	0.00046	0.00053	0.000382	0.0006

А	sl	ha	de	d
Α	sl	ha	de	d

A shaded value means exceeded the freshwater aquatic life criteria A shaded value means reading exceeded the drinking water quality criteria. A shaded value means exceeded both the aquatic life and drinking water criteria. A shaded value means reading had detection limit exceeding criteria.

 A shaded value means reading had detection limit exceeding criteria.

 (AO - Aesthetic Objective)

 1. BC Environment Approved and Working Criteria for Water Quality, last updated March 2018

 2. All criteria limits for BCWQG - based on Total Metal Concentration except Aluminum and Cadmium (Dissolved)

 3. BC Environment Drinking Water Guidelines and Canadian Drinking Water Standards

 c. Limit dependent on choride concentration.

 (MAC - Maximum Acceptable Concentration)

 d. Limit pH and temperature dependent.

 e. Limit dependant on hardness.

 f. Limit for chromium (IV)

 g. Limit for total, no dissolved concentrations

 h.copper (mg/L) = (0.094* Hardness)/1000

 i. Limit branchare do not trad discolud CaCO³

Limit for hardness based on total dissolved CaCO³
 at PH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
 k. Limit for dissolved metals, not total metals

Table 1. Hazelton Surface Water Quali	ny Data	BC MoE Guidelines									CITY	08 (Hwy 16 Ea	of Culturet)							SW-09
		BC MoE Guidelines Freshwater Aquatic Life (1) (2)	Drinking Water (2) (3)								Sw-	<u>08 (Hwy 16 E</u> 2	ist Cuivert)							Rossvale Creek Downstream
Parameters	Units				1	r	r r						1	r	1				1	
Date				26-Jul-04	25-May-06	8-Aug-07	10-Jun-08	7-Jul-14	25-Nov-14	26-May-15	1-Nov-15	16-Apr-16	7-Jul-16	25-Oct-16	24-Apr-17	14-Jun-17	28-May-18	13-Aug-19	21-Nov-19	7-Jul-14
Total Hardness	mg/L	-	-					129	59	35	38	31	47	31	25	30	40	246	36	56 50
Dissolved Hardness (CaCO3) Alkalinity (Total as CaCO3)	mg/L mg/L	-	-	107	39	64	50	57	26	11	14	12	22	11	12	11			7	60
Total Organic Carbon (C)	mg/L	+/- 20% of background	40	107	37	04	50	27.8	20	11	14	42.0	65.7	40.1	29.5	38.3			46.3	15.1
Alkalinity (PP as CaCO3)	mg/L	-	-					27.0				12.0	0017	10.11	27.0	50.5			1015	
Bicarbonate (HCO3)	mg/L	-	-																	
Carbonate (CO3)	mg/L	-	-																	
Hydroxide (OH)	mg/L	-	-																	
Chemical Oxygen Demand (COD)	mg/L	-	-	129 6.0	49 ND	38 ND	50 ND	99 ND	87 ND	101 <4.0	108 <4.0	91 <5.0	133 5.600	98 <4.0	88 <4.0	137 <4.0	102	63 2.4	114	28 ND
Biological Oxygen Demand (BOD) Sulphate (SO4)	mg/L mg/L		- 500. AO	6.0	ND 0.9	ND	ND	ND ND	ND	<4.0	<4.0	<5.0	5.600 <1.0	<4.0	<4.0	<4.0	<2.0 <0.30	<1.5	< 0.30	ND
Chloride (Cl)	mg/L	600	250, AO	41	47	43	25	123	57	33	35	24	31	27	27	27	29	436.0	29	32
Fluoride (F)	mg/L	0.4-1.87 (e)	1.5	41		-15	25	125	51	55	55	24	51	27	27	27	0.038	<0.10	< 0.020	52
Total Kjeldahl Nitrogen	mg/L	-	-	1.74	0.76	0.83	0.65	1.05	1.8	0.980	1.100								2.19	0.609
Ammonia (N)	mg/L	0.681-28.7 (d)	-	0.24	ND	ND	ND	0.04	0.03	< 0.03	0.055	0.030	0.054	0.033	0.470	0.1	0.0572	0.0067	0.039	0.05
Nitrate plus Nitrite (N)	mg/L	-	-				\square		0.039			0.019	0.060	0.019	0.019	0.029	0.067			
Nitrite (N)	mg/L	0.06 -0.6 (c)	1.0				┥──┤	ND	+	ļ	ļ	< 0.01	< 0.01	<0.01	< 0.01	0.02	0.0022	<0.0050	< 0.0010	ND 0.042
Nitrate (N) Conductivity	mg/L uS/cm	32.8	10 MAC	336	227	249	143	ND 519	262	134	144	0.019	0.060 148	0.019	0.019 123	<0.01 128	0.0648	< 0.025	0.0071	0.042
Field Conductivity	uS/cm	-	-	330	221	247	145	J17	202	134	144	110	140	11/	123	120	102		150	224
pH	pH Units	6.5 - 9.0	7.0-10.5	6.9	7.2	7.1	6.8	6.8	6.2	6.0	6.0	6.0	6.3	6.2	5.6	5.9	1.52	7.41	6.32	7.1
Field pH	pH Units	6.5 - 9.0	7.0-10.5														5.7	6.36		1
TSS	mg/L	25 mg/L (background 25-250 mg/l)) (i)	<500, AO					8.6	-											ND
Total Metals Total Aluminum	m-fl	0.022.0.1 (; 1)	0.5	5.00	0.50	0.20	0.41		176	0.20	0.29	0.19	0.86	0.24	0.19	0.24	0.31	0.0504	0.26	
Total Antimony (Ab)	mg/L mg/L	0.023-0.1 (j,k) 0.009	9.5 0.006	5.00 <0.05	0.50 ND	0.20 ND	0.41 ND		1.76 ND	0.29	< 0.0001	<0.0001	0.86 <0.0001	0.24	<0.00010	0.24	0.00012	0.00012	0.36	<u> </u>
Total Arsenic (As)	mg/L	0.005	0.00 MAC	<0.05	ND	ND	0.0008		0.0026	0.00070	0.00060	<0.0001	0.00150	0.00070	0.00053	0.00099	0.00173	0.0012	0.00049	
Total Barium (Ba)	mg/L	1	1.0	0.101	0.021	0.024	0.022		0.045	0.01300	0.01300	0.01000	0.02400	0.01200	0.00890	0.012	0.019	0.113	0.012	1
Total Beryllium (Be)	mg/L	0.00013	-	< 0.0002	ND	ND	ND		ND	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	
Total Bismuth (Bi)	mg/L	-	-	< 0.05	ND	ND	ND		ND	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.000050	< 0.000050	< 0.000050	
Total Boron (B)	mg/L	1.2	5.0, MAC	0.013	0.023	ND	ND		ND	0.00600	< 0.004	< 0.004	0.00700	0.01600	< 0.004	< 0.004	< 0.010	< 0.010	< 0.010	
Total Cadmium (Cd)	mg/L	0.000027 - 0.00280 (e) (k)	0.005, MAC	<0.002 35.8	ND 14.4	ND 19.6	0.00006		0.000117 17.0	0.00009 9.5	0.00001 10.6	0.00002	0.00004 14.0	0.00085	<0.000010 7.0	0.000023 8.48	0.0000279 11.7	0.0000273 72.4	0.0000187 10.4	<u> </u>
Total Calcium (Ca) Total Cesium (Cs)	mg/L mg/L	<4 sensitive to acid input	-	33.8	14.4	19.0	13.0		17.0	9.5	10.6	8.7	14.0	8.5	7.0	8.48	0.00002	<0.000010	0.000018	
Total Chromium (Cr)	mg/L	0.001 (f)	0.05, MAC	0.007	ND	ND	0.001		0.0022	< 0.0005	0.00070	< 0.0005	0.00100	0.00090	< 0.00050	< 0.00050	0.00051	0.00021	0.00045	
Total Cobalt (Co)	mg/L	0.11	-	0.005	ND	ND	0.0006		0.00182	0.00025	0.00041	0.00024	0.00087	0.00033	0.00038	0.00054	0.00095	0.00316	0.00018	1
Total Copper (Cu)	mg/L	0.0032-0.0396 (e)	1.0, AO	0.01	ND	0.0090	0.0034		0.0072	0.0018	0.0012	0.0013	0.0019	0.0032	0.0010	0.00064	0.00145	0.00054	0.00136	1
Total Iron (Fe)	mg/L	1	0.3, AO	10.00	0.61	0.63	0.65		4.70	0.71	1.07	0.65	2.31	0.88	0.63	0.88	1.87	2.72	0.63	
Total Lead (Pb)	mg/L	0.011-0.402 (e)	0.01	<0.03	ND	ND	0.0005		0.00299	0.0003	0.0005	0.0003	0.0012	0.0003	0.0002	0.00029	0.000621	0.000104	0.000421	
Total Lithium (Li) Total Magnesium (Mg)	mg/L	-	-	ND 7.9	ND 3	ND 4 1	ND 3.04		ND 4.01	0.0004	0.0005	0.0003	0.0007	0.0004	0.0003	0.0003	<0.0010 2.72	0.0013	<0.0010 2.78	
Total Maganese (Mn)	mg/L mg/L	0.8-3.4 (e)	0.05, AO	5.05	0.036	0.631	0.21		0.344	0.069	0.105	0.059	0.139	0.078	0.099	0.144	0.406	1.75	0.0314	+
Total Mercury (Hg)	mg/L mg/L.	0.0001	0.001	< 0.00005	0.050 ND	ND	ND		ND	< 0.0002	< 0.00002	<0.00002	< 0.00002	<0.0002	< 0.0002	< 0.00002	0.0000051	<0.0000050	0.0000074	<u>† </u>
Total Molybdenum (Mo)	mg/L	2	0.25	< 0.005	ND	ND	ND		ND	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.00010	< 0.00010	< 0.00010	0.000119	0.000068	< 0.000050	<u>1 </u>
Total Nickel (Ni)	mg/L	0.025-0.15 (e)	-	0.01	ND	ND	0.002		0.0036	0.00070	0.00100	0.00060	0.00130	0.00070	0.00056	0.00059	0.00125	0.00119	0.00077	
Total Phosphorus (P)	mg/L	0.005-0.015 (for lakes only)	0.01, AO	0.30	ND	ND	ND		0.14	0.03	< 0.02	<0.02	0.12	< 0.02	<0.050	< 0.050	0.103	0.124	< 0.050	
Total Potassium (K) Total Rubidium (Rb)	mg/L mg/L	-	-	2	1	2	0.94		0.898	0.50000	0.13000	0.31000	0.36000	0.26000	2.26000	0.82	0.741 0.00071	2.26 0.00099	0.394 0.00045	
Total Selenium (Se)	mg/L mg/L	0.002	0.01. MAC	< 0.03	ND	ND	0.0001		ND	0.00060	< 0.0005	<0.0005	< 0.0005	<0.0005	<0.00050	<0.00050	0.00071	0.00099	<0.00045	<u>+</u>
Total Silicon (Si)	mg/L mg/L	-	-	<0.03	2.59	3.67	3.94		5.23	2.40	2.60	2.50	4.00	3.20	1.50	2.6	2.14	3.42	3.28	<u>†</u>
Total Silver (Ag)	mg/L	0.0001-0.003 (e)	-	28.9	ND	ND	0.000027		0.000061	< 0.00005	< 0.00005	<0.00005	< 0.00005	<0.00005	<0.000050	<0.000050	<0.000010	<0.000010	<0.000010	1
Total Sodium (Na)	mg/L	-	<200, AO	0.219	31.3	25.5	15.5		30.7	15.1	13.4	13.8	13.1	12.6	12.5	13.2	16.1	189	13.4	
Total Strontium (Sr)	mg/L	-	-	0.8	0.084	0.119	0.088		0.11	0.067	0.061	0.056	0.076	0.066	0.046	0.0577	0.0793	0.535	0.0673	
Total Sulphur (S)	mg/L	-	-	< 0.05	0.5	0.6	ND		ND	2.00000	<1	<1	1.00000	<1	<3.0	<3.0	<0.50	0.55	<0.50	┫
Total Tellurium (Te) Total Thallium (Tl)	mg/L mg/L	0.0008	-	< 0.03	ND	ND	ND		<0.0002 ND	<0.0002 <0.00002	<0.0002 <0.00002	<0.0002	<0.0002 <0.00002	<0.0002	<0.00020	<0.00020 <0.000020	<0.00020 <0.000010	<0.00020	<0.00020 <0.000010	+
Total Thallium (11) Total Thorium (Th)	mg/L mg/L	-	-	<0.05	ND	ND	ND		<0.0001	<0.0002	<0.0002	<0.0002	<0.00002	<0.0002	<0.000020	<0.000020	<0.00010	<0.00010	<0.00010	+
Total Tin (Sn)	mg/L	-		< 0.02	ND	ND	ND		<0.0001 ND	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	1
Total Tungsten (W)	mg/L mg/L	-	-	10.02						.0.0002	.0.0002	.0.0002	10.0002	.0.0002	.0.00020	\$0.00020	0.00386	<0.0010	0.00379	<u>†</u>
Total Titanium (Ti)	mg/L	-	-	0.064	0.003	ND	0.007		0.0238	< 0.005	< 0.005	< 0.005	0.01200	< 0.005	< 0.0050	< 0.0050	< 0.00010	< 0.00010	< 0.00010	1
Total Uranium (U)	mg/L	0.0085	0.02	ND	ND	ND	ND		ND	< 0.00002	< 0.00002	< 0.00002	0.00003	< 0.00002	< 0.000020	< 0.000020	0.000017	< 0.000010	< 0.000010	
Total Vanadium (V)	mg/L	-	-	0.008	ND	ND	ND		0.0058	0.00100	0.00100	< 0.001	0.00200	< 0.001	< 0.0010	0.0011	0.0011	< 0.00050	0.00104	L
Total Zinc (Zn)	mg/L	0.033-0.34 (e)	5.0, AO	0.025	0.006	0.021	0.007		0.027	0.00600	0.00700	0.00600	0.00900	0.00800	< 0.0040	0.0046	0.148	0.0034	0.005	───
Fotal Zirconium (Zr) Notes:	mg/L	-	-	< 0.005	ND	ND	0.0005		ND	0.00020	0.00020	0.00010	0.00020	0.00010	0.00012	0.00014	0.000214	< 0.00020	< 0.00020	<u> </u>

A shaded value means exceeded the freshwater aquatic life criteria A shaded value means reading exceeded the drinking water quality criteria. A shaded value means exceeded both the aquatic life and drinking water criteria. A shaded value means reading had detection limit exceeding criteria.

 A shaded value means reading had detection limit exceeding criteria.

 (AO - Aesthetic Objective)

 1. BC Environment Approved and Working Criteria for Water Quality, last updated March 2018

 2. All criteria limits for BCWQG - based on Total Metal Concentration except Aluminum and Cadmium (Dissolved)

 3. BC Environment Drinking Water Guidelines and Canadian Drinking Water Standards

 c. Limit dependent on choride concentration. (MAC - Maximum Acceptable Concentration)

 d. Limit pH and temperature dependent.

 e. Limit dependant on hardness.

 f. Limit for chornium (IV)

 g. Limit for total, no dissolved concentrations

 h.copper (mg/L) = (0.094* Hardness)/1000

 i. Limit brandene do actral disclosubad CorCO³

i. Limit for hardness based on total dissolved CaCO³ j. at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L. k. Limit for dissolved metals, not total metals

Table 2. Hazelton Shallow Groundwater Quality Data

Table 2. Hazelton Shallow Ground	iwater Quality											SGW-1							
		BC MoE Guidel	lines	BC CSR Standards															
Parameters	Units	Freshwater Aquatic Life (1) (2)	Drinking Water (2) (3)	BC CSR-DW (4)															
Date					14-Jun-17	7-Jul-17	13-Jul-17	20-Jul-17	27-Jul-17	1-Aug-17	9-Aug-17	16-Aug-17	5-Oct-17	30-May-18	10-Jul-18	11-Sep-18	16-Apr-19	12-Aug-19	21-Nov-19
Total Hardness	mg/L	-	-	-	103	507	1050	712	1110	954	977	880	299	1080	611	878	205	296	457
Dissolved Hardness (CaCO3)	mg/L	-	-	-			10.0					880			0.5.1				
Alkalinity (Total as CaCO3)	mg/L	-	- 4.0	-	91 26.8	560 89	690 395	520 136	790 279	720 224	750 210	770	68	707 342	854 245	934 75	237	382 9,48	481
Total Organic Carbon (C) Alkalinity (PP as CaCO3)	mg/L mg/L	-	4.0	-	20.8	89	393	130	219	224	210	152	230	542	245	15	14.1	9.48	24.4
Bicarbonate (HCO3)	mg/L	-	-										250						
Carbonate (CO3)	mg/L	-	-	-							1	1							
Hydroxide (OH)	mg/L	-	-	-															
Chemical Oxygen Demand (COD)	mg/L	-	-	-	83	770	944	902	900	681	570	350	160	1050	672	255	91	80	71
Biological Oxygen Demand (BOD)	mg/L	-	-	-	6.9	230.000	590	200	430	390	390	330	<38						
Sulphate (SO4)	mg/L	128-429 (e)	500, AO	500	<1.0	1.2	<1.0	1.8	1.1	1.2	2.2	<1.0	51.7	<3.0	<3.0	<3.0	7.28	6.42	11.3
Chloride (Cl)	mg/L	600	250, AO	250	2	122	123	132	152	145	152	142	58.1	105	98.1	98.3	7.08	11.7	59.9
Total Kjeldahl Nitrogen	mg/L	-	-	-	0.1.1	0.00	1.0.1		0.54		0.10		0.00	2.00	1.00	1.0			6.19
Ammonia (N)	mg/L	0.681-28.7 (d)	-	-	0.14	0.33	1.04	0.4	0.54	0.53	0.43	0.39	0.08	3.09	1.28	1.2	0.257	0.292	0.335
Nitrate plus Nitrite (N) Nitrite (N)	mg/L mg/I	- 0.06 -0.6 (max) (c)	- 1.0	10 1.0	<0.010	0.0149	0.0107 <0.01	0.0361	0.0832 <0.01	<0.01	<0.0100 <0.01	0.0729 <0.01	0.0296 <0.01	<0.060 <0.010	<0.060 <0.010	0.077	<0.001	<0.0010	<0.0050
Nitrate (N)	mg/L mg/L	32.8	1.0 10 MAC	10	< 0.01	0.015	<0.01	<0.01	<0.01 0.083	<0.01	<0.01	0.073	< 0.01	<0.010	<0.010	0.013	<0.001	<0.0010	<0.0050
Conductivity	uS/cm	-		-	185	1350	1660	1220	1860	1760	1780	1860	704	~0.050	~0.050	0.004	~0.0000	~0.0000	915
Field Conductivity	uS/cm	-	-	-											1470	1124	460	657	586
pH	pH Units	6.5 - 9.0	7.0-10.5	-	6.8	6.6	6.4	6.8	6.4	6.5	6.5	6.5	7					7.78	8.14
TSS	mg/L	25 mg/L (background 25-250 mg/l)) (i)	<500, AO	-															
Dissolved Metals																			
Dissolved Aluminum (Al)	mg/L	0.023-0.1 (b,c)	9.5	9.5										0.0421	0.0217	0.16	3.1	0.0153	0.0643
Dissolved Antimony (Sb)	mg/L	0.009	0.006	0.006										0.00018	< 0.00050	< 0.00050	0.00011	< 0.00010	< 0.00010
Dissolved Arsenic (As)	mg/L	0.005	0.01 MAC	0.01										0.00904	0.00448	0.0116	0.00836	0.00466	0.00297
Dissolved Barium (Ba) Dissolved Beryllium (Be)	mg/L mg/L	1 0.00013	1.0	0.008										0.499 <0.00010	0.282	0.47 <0.00050	0.234	0.233	0.228
Dissolved Bismuth (Bi)	mg/L mg/L	0.00013	-	0.008							1			<0.00010	<0.00030	<0.00050	<0.00010	<0.00010	<0.00010
Dissolved Boron (B)	mg/L	1.20	5.0, MAC	5.00										0.107	0.127	0.212	0.101	0.155	0.083
Dissolved Cadmium (Cd)	mg/L	0.000027 - 0.00280 (e)	0.005	0.005										<0.0000050	0.00003	<0.00025	0.00053	<0.0000050	0.0000094
Dissolved Calcium (Ca)	mg/L	<4 sensitive to acid input	-	-										287	162	237	62	87	117
Dissolved Cesium (Cs)	mg/L	-		-										< 0.000010	< 0.000050	< 0.000050	0.000157	< 0.000010	< 0.000010
Dissolved Chromium (Cr)	mg/L	0.001 (e, f)	0.05, MAC	0.05 (VI), 6 (III)										0.00042	< 0.00050	0.00071	0.00350	< 0.00010	0.00015
Dissolved Cobalt (Co)	mg/L	0.11	-	0.001										0.0193	0.0037	0.0063	0.00423	0.00146	0.00272
Dissolved Copper (Cu)	mg/L	0.0032-0.0396 (e)	1.0, AO	1.5										< 0.00050	< 0.0010	< 0.0010	0.0131	0.00057	0.00107
Dissolved Iron (Fe) Dissolved Lead (Pb)	mg/L mg/L	0.35 0.011-0.402 (e)	0.3, AO 0.01	6.5	-									80.3 <0.000050	37.8 <0.00025	<0.00025	59.3 0.002380	28 0.000058	34.4 0.000087
Dissolved Lithium (Li)	mg/L mg/L	0.011-0.402 (e)	-	0.01							1			<0.000050	<0.00023	<0.00025	0.002380	<0.0010	0.00087
Dissolved Magnesium (Mg)	mg/L			-										89	50	70	13	19	40
Dissolved Marganese (Mn)	mg/L mg/L	0.8-3.4 (e)	0.05. AO	1.5							1	1		19.4	13.3	14.1	3.03	4	4.15
Dissolved Mercury (Hg)	mg/L	0.0001, MAC	0.001	0.001										< 0.0000050	< 0.0000050	< 0.000050	0.00002	< 0.0000050	< 0.0000050
Dissolved Molybdenum (Mo)	mg/L	2	0.25	0.25	1		1							0.00063	0.00112	0.00052	0.00038	0.00038	0.00025
Dissolved Nickel (Ni)	mg/L	0.025-0.15 (e)	-	0.08										0.00627	0.0026	0.0043	0.00669	0.00091	0.00238
Dissolved Phosphorus (P)	mg/L	0.005-0.015 (for lakes only)	0.01, AO	-										0.174	< 0.25	< 0.25	0.234	< 0.050	< 0.050
Dissolved Potassium (K)	mg/L	373-432	-	-	1						L	L		12.4	8.83	12.9	3.94	6.07	4.31
Dissolved Rubidium (Rb)	mg/L	-	-	-	-						<u> </u>	<u> </u>		0.00115	0.0011	0.0011	0.00133	0.0005	0.00032
Dissolved Selenium (Se) Dissolved Silicon (Si)	mg/L mg/L	0.002	0.01, MAC	0.01	+									0.00020	<0.00025	<0.00025	0.000423	0.000154	<0.000050
Dissolved Silicon (Si) Dissolved Silver (Ag)	mg/L mg/L	0.001-0.003 (e)		0.02	+		ł				<u> </u>	<u> </u>		<0.000010	8.4 <0.000050	<0.000050	<0.000010	5.6 <0.000010	6.3 <0.000010
Dissolved Soliver (Ag)	mg/L	-	<200, AO	200	1									49.9	32.2	51.2	13.5	18.0	29.3
Dissolved Stontium (Na)	mg/L		-	2.50	1		1				t	1		2.22	1.27	1.76	0.42	0.67	0.97
Dissolved Sulphur (S)	mg/L	-	-	-	1		1				1			0.9	<2.5	<2.5	2.64	1.69	3.5
Dissolved Tellurium (Te)	mg/L			-										< 0.00020	< 0.0010	< 0.0010	<0.00020	< 0.00020	< 0.00020
Dissolved Thallium (Tl)	mg/L	0.0017	-	-										< 0.000010	< 0.000050	< 0.000050	0.00	< 0.000010	< 0.000010
Dissolved Thorium (Th)	mg/L	-	-	-										< 0.00010	< 0.00050	< 0.00050	0.00	< 0.00010	< 0.00010
Dissolved Tin (Sn)	mg/L	-	-	2.5										0.00031	< 0.00050	< 0.00050	0.00010	< 0.00010	0.00013
Dissolved Titanium (Ti)	mg/L	2	-	-	1						L	L		0.00	< 0.0015	< 0.0045	0.05	0.00	0.00
Dissolved Tungsten (W)	mg/L	-	0.02	0.003										<0.00010	<0.00050	< 0.00050	< 0.00010	<0.00010	< 0.00010
Dissolved Uranium (U)	mg/L mg/I	0.3	0.02	0.02										0.0006	0.000614	0.000581	0.000289	0.000124	0.000541
Dissolved Vanadium (V) Dissolved Zinc (Zn)	mg/L mg/L	0.006 0.19-0.72 (Hardness 300-1.000 mg/L) (e)	- 5.0. AO	0.02	+									0.0037	<0.0025 <0.0050	0.0032	0.00844	<0.00050 0.0048	<0.00050 0.0094
Dissolved Zinc (Zn) Dissolved Zirconium (Zr)	mg/L mg/L	0.12-0.72 (marginess 500-1,000 mg/L) (e)	J.0, AU	3	+		ł				<u> </u>	<u> </u>		0.0031	<0.0050	0.0060	0.20	<0.0048	<0.0094
Notes:	mg/L	-	-	80 10		1	1	1	1	I	1		I	0.0010	0.0005	0.0014	0.0007	(0.00020	.0.00020
110103																			

 Notes:

 2018 data compared to updated criteria

 A shaded value means exceeded the BC WQG freshwater aquatic life criteria

 A shaded value means reading exceeded the BC WQG drinking water quality criteria.

 A shaded value means reading exceeded the CSR drinking water quality criteria.

 A shaded value means exceeded dmore than one criteria.

 A shaded value means reading had detection limit exceeding criteria.

 A shaded value means reading had detection limit exceeding criteria.

 A shaded value means reading exceeded the CSR drinking water quality criteria for sampling stations that trigger the Ground Water Quality Exceedances Response Plan

 (AQ - Aesthetic Objective)

Water Quality Exceedances Response Plan
 (AO - Aesthetic Objective)
 1. BC Environment Approved and Working Criteria for Water Quality, last updated March 2018
 2. All criteria limits for BCWQG - based on Total Metal Concentration except Aluminum and Cadmium (Dissolved)
 3. BC Environment Drinking Water Guidelines and Canadian Drinking Water Standards
 4. BC Contaminated Sites Regulation for Drinking Water (BC-CSR-DW) Schedule 3.2, last updated January 2019
 c. Limit dependent on chloride concentration. (MAC - Maximum Acceptable Concentration)
 d. Limit pH and temperature dependent.
 e. Limit dependant on hadress. Range given for hardness 50 to 1,000 mg/L.
 f. Limit for chromium (IV)
 g. Limit for total, no dissolved concentrations
 h.copper (mg/L) = (0.094* Hardness/1000
 i. Jimit for hardness Saved on total dissolved CaCO³

i. Limit for hardness based on total dissolved CaCO3

Table 2. Hazelton Shallow Groundwater Quality Data

Data base Data base <t< th=""><th></th><th></th><th>BC MoE Guidel</th><th>ines</th><th>BC CSR Standards</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>SG</th><th>W-3</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>			BC MoE Guidel	ines	BC CSR Standards								SG	W-3						
Dalla Description Descrin Description De		Units	Freshwater Aquatic Life (1) (2)	Drinking Water (2) (3)	BC CSR-DW (4)			10 1 1 10		AR 1 1 4						40 8 1 40	10.0 10			
Description Matrix Lat. Lat. <thlat.< th=""> Lat. Lat.</thlat.<>		<i>a</i>																	12-Aug-19	21-Nov 673
Admin Admin <t< td=""><td></td><td>0</td><td>-</td><td>-</td><td>-</td><td>827</td><td>480</td><td>001</td><td>760</td><td>1020</td><td>401</td><td>1050</td><td>1050</td><td>300</td><td>/14</td><td>421</td><td>498</td><td>623</td><td></td><td>673</td></t<>		0	-	-	-	827	480	001	760	1020	401	1050	1050	300	/14	421	498	623		673
Darbone <			-	-	-	640	220	540	690	810	440	800	020		740	557	504	606	750	733
Chair Chi C C C C </td <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>67</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>36.9</td>			-	-	-									67						36.9
Name Name </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>104.0</td> <td>00</td> <td>199</td> <td>196</td> <td>322</td> <td>154</td> <td>390</td> <td>312</td> <td></td> <td>160</td> <td>114</td> <td>51</td> <td>24.7</td> <td>20.7</td> <td>30.9</td>						104.0	00	199	196	322	154	390	312		160	114	51	24.7	20.7	30.9
Change (i) m ²							-				-			240				-		
Image Image <t< td=""><td></td><td></td><td>-</td><td>-</td><td>-</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>			-	-	-	1														-
Chance (spin) (spin) (spin)			-	-	-															
Image integramat						326	502	518	600	038	385	1100	1000	201	554	365	163	120	120	135
Supple Conditional and the state of the		6													554	505	105	120	123	155
Character Character Control Contro Control Control		6	128-429 (e)	500 40	500										<15	13.9	6.4	<15	<15	<1.5
Disk Disk <thdisk< th=""> Disk Disk <th< td=""><td></td><td></td><td></td><td>, .</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>15.5</td><td></td><td></td><td></td><td>9.8</td></th<></thdisk<>				, .												15.5				9.8
Amem Amem Ame			000	230, AO		150	45.1	45.7	40.7	49.2	23.9	43.7	40.5	87	43.9	44.5	49.2	3.4	12.4	5.0
Share house house house house house Share house h	, ,	0	0.681.28.7.(d)	-	-	0.09	0.30	0.4	0.38	0.67	0.38	1.03	0.49	0.09	0.677	0.694	1.05	0.606	1.45	1.28
NameSpin-Spin-Spin-Spin-Spin-Spin-Spin-Spin-			0.081-28.7 (d)		10													0.000	1.45	1.20
Nume map.			0.06, 0.6 (max)(c)	1.0														<0.0050	<0.0050	< 0.005
Calasies Sing Sing <td></td> <td></td> <td></td> <td>1.0</td> <td></td> <td><0.00</td>				1.0																<0.00
relations stom stom <td></td> <td></td> <td>52.0</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><0.025</td> <td><0.025</td> <td>0.2</td> <td><0.020</td> <td></td> <td>1120</td>			52.0	-	-										<0.025	<0.025	0.2	<0.020		1120
n11 0.1 0.5 0.0 0.1 0.1 0.10<				_	-	1500	005	1070	1500	1020	714	1050	1050	105		663	811	1126		804
TN opt Path-Advanced 220 (01) (0) Opt O O O O O D <t< td=""><td>nH</td><td></td><td>65-90</td><td>7.0-10.5</td><td>_</td><td>67</td><td>67</td><td>6.6</td><td>67</td><td>6.5</td><td>6.6</td><td>64</td><td>6.5</td><td>69</td><td></td><td>005</td><td>011</td><td>1120</td><td></td><td>7.67</td></t<>	nH		65-90	7.0-10.5	_	67	67	6.6	67	6.5	6.6	64	6.5	69		005	011	1120		7.67
Bander Mach International and the second secon	TSS				-	0.7	0.7	0.0	0.1	0.5	0.0	0.1	0.5	0.7					1.00	1.07
Decode Aluman ADmg.0.022-1.02,0.0330.0530.9530.058 <t< td=""><td></td><td>iiig/12</td><td>25 mg/E (background 25-250 mg/f) (f)</td><td>000,110</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		iiig/12	25 mg/E (background 25-250 mg/f) (f)	000,110																
Dander Adminter Additional		mg/L	0.023-0.1 (b.c)	9.5	9.5		1				1				933	0.0522	0.0583	0.0588	0.0208	0.026
Desciered fraces (As) ergl 0.005 0.001 MC 0.01 0.01 0.007<						1	1													< 0.000
Baseder Barumitigi end																				0.0085
InductorInduct			1													0.0000	0.02.0			0.148
Descived Ream mark I			0.00013		0.008															< 0.000
Basedword Binor (B) Ingl. Labor Add Control Same Add Control			-																	< 0.0000
Dasked Calmine (C3) mgL 0.000027 - 0.00028 (a) 0.0003 0.00031 0			1.20	5.0. MAC	5.00															0.014
Basedwer Cashim (C) mgL enside to cashim (C) mgL enside (Cashim (C)) ensid (Cashim (C)) enside (Cashim (C))																				0.0002
Bookend Chaim (Cy) mgL O.D01 (G,) O.D3, MC O.D5, MC				-																172
Basked Cabal (Ca) mgL 0.0032 (0.386) 10.00 10.001 0.0014 0.0016 0.0016 0.0016 0.0016 0.0016	Dissolved Cesium (Cs)		-		-											< 0.000020	< 0.000020	< 0.000050	< 0.000050	< 0.0000
Basked Cabal (Ca) mgL 0.0032 (0.386) 10.00 10.001 0.0014 0.0016 0.0016 0.0016 0.0016 0.0016	Dissolved Chromium (Cr)	mg/L	0.001 (e, f)	0.05. MAC	0.05 (VI), 6 (III)										0.01090	0.00023	0.00064	< 0.00050	< 0.00050	0.0001
Dissolved Iden (F) mgL 0.037	Dissolved Cobalt (Co)	mg/L		-	0.001										0.020	0.008	0.011	0.0101	0.00904	0.0098
Dissolved Land (Ph) mgL 0.011-0.02 (0 0.001 0.001 0.00080 0.0008 0.0	Dissolved Copper (Cu)	mg/L	0.0032-0.0396 (e)	1.0, AO	1.5										0.0181	< 0.00040	0.00052	< 0.0010	< 0.0010	0.0006
Dissded Lithing (1) mg/L 0.008 <	Dissolved Iron (Fe)	mg/L	0.35	0.3, AO	6.5										61.6	24.4	42.2	124	24.9	74.2
Disolved Magnesium (Ap) mgL 0.3.14(0) 0.0.5.AO 1.5 M	Dissolved Lead (Pb)	mg/L	0.011-0.402 (e)	0.01	0.01										0.00337	< 0.00010	< 0.00010	< 0.00025	< 0.00025	< 0.0000
Disolved Marganes (Mn) mgL 0.83.4 (a) 0.00, AOC 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.50 1.50 1.5 1.50 <td>Dissolved Lithium (Li)</td> <td>mg/L</td> <td>-</td> <td>-</td> <td>0.008</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.006400</td> <td>< 0.0020</td> <td>< 0.0020</td> <td>< 0.0050</td> <td>< 0.0050</td> <td>< 0.001</td>	Dissolved Lithium (Li)	mg/L	-	-	0.008										0.006400	< 0.0020	< 0.0020	< 0.0050	< 0.0050	< 0.001
Disolved Manganes (Ma) mg/L 0.08.3.4 (c) 0.05, AO 1.5 0.05 1.5 0.05 1.5 0.05 0.00000000000000000000000000000000000	Dissolved Magnesium (Mg)	mg/L	-	-	-										59	32	41	58	67	59
Dissolved Molychemun (Mol) mgL 2 0.25 0.25 0.05 0.01 0.00013 0.00113 0.0013 0.00113 0.0013 0.00113 0.0013 0.00113 0.0013 0.00113 0.0013 0.00113 0.0013 0.0013 0.0013 0.0013 <td></td> <td></td> <td>0.8-3.4 (e)</td> <td>0.05, AO</td> <td>1.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15.5</td> <td>8.95</td> <td>11.5</td> <td>14.5</td> <td>15.6</td> <td>13.5</td>			0.8-3.4 (e)	0.05, AO	1.5										15.5	8.95	11.5	14.5	15.6	13.5
Dissived Nidel (N) mgL 0.025.015(c) . 0.08 C C C C C Dissived Plosphora (P) mgL 0.005.0015 (hr lakes only) 0.01, AO . C Dissived Plosphora (P) mgL 0.005.0015 (hr lakes only) 0.01, AO . C C Dissived Plosphora (P) mgL 0.005.0015 (hr lakes only) 0.01, AO . C C Dissived Plosphora (P) mgL 0.005.0015 (hr lakes only) 0.01, AO . C C C Dissived Plosphora (P) mgL 0.005.0010 (hr lakes only) 0.01, AO 0.01 C C C Dissived Plosphora (P) mgL 0.002 0.000 0.0002 0.0001 0.0002 Dissived Plosphora (P) mgL 0.002 0.000 0.0000	Dissolved Mercury (Hg)	mg/L	0.0001, MAC	0.001	0.001										0.000012	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000
Dissolved Phospharus (P) mgL 0.005-0.015 (for lakes only) 0.01 - I I I 0.005-0.015 (for lakes only) 0.01 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.0001 <td>Dissolved Molybdenum (Mo)</td> <td>mg/L</td> <td>2</td> <td>0.25</td> <td>0.25</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.000311</td> <td>0.00068</td> <td>0.00043</td> <td>0.00153</td> <td>0.00112</td> <td>0.0011</td>	Dissolved Molybdenum (Mo)	mg/L	2	0.25	0.25										0.000311	0.00068	0.00043	0.00153	0.00112	0.0011
Dissolved Protassium (K) mg/L 373.432 - <	Dissolved Nickel (Ni)	mg/L	0.025-0.15 (e)	-	0.08										0.0	0.0	0.0	0.01120	0.00620	0.0097
Dissolved Rubidium (Rb) mg/L <td>Dissolved Phosphorus (P)</td> <td>mg/L</td> <td>0.005-0.015 (for lakes only)</td> <td>0.01, AO</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.274</td> <td>< 0.10</td> <td>< 0.10</td> <td>< 0.25</td> <td>< 0.25</td> <td>0.06</td>	Dissolved Phosphorus (P)	mg/L	0.005-0.015 (for lakes only)	0.01, AO	-										0.274	< 0.10	< 0.10	< 0.25	< 0.25	0.06
Dissolved Selenium (Se) mg/L 0.002 0.01, MAC 0.01 me	Dissolved Potassium (K)	mg/L	373-432	-	-										4.92	3.2		2.08	1.95	2.38
Dissolved Silicon (Si) mg/L mg/	Dissolved Rubidium (Rb)	mg/L	-	-	-										0.0021	0.0005	< 0.00040	< 0.0010	< 0.0010	0.0006
Dissolved Solver (Ag) mg/L 0.001-0.003 (e) - 0.02 0.02 0.000000	Dissolved Selenium (Se)	mg/L	0.002	0.01, MAC	0.01										0.0003	0.0003	0.0002	< 0.00025	< 0.00025	0.0002
Dissolved Solima (Na) mg/L - <200, AO 200	Dissolved Silicon (Si)	mg/L	-	-	-										21.3	8.26	9.76	6.75	10.1	8.65
Dissolved Strontium (Sr) mg/L - 2.50 - - 2.50 - - 1.240 0.768 0.887 0.953 1.090 1 Dissolved Sulphur (Sr) mg/L -	Dissolved Silver (Ag)	mg/L	0.001-0.003 (e)	-	0.02										< 0.000010	< 0.000020	< 0.000020	< 0.000050	< 0.000050	< 0.0000
Dissolved Subplar (S) mg/L	Dissolved Sodium (Na)	mg/L	-	<200, AO												34.2			18.8	14.4
Dissolved Tallium (Te) mg/L Conduct Conduct <td></td> <td></td> <td>-</td> <td>-</td> <td>2.50</td> <td></td> <td>1.010</td>			-	-	2.50															1.010
Dissolved Thallium (T) mg/L 0.00017 - </td <td>Dissolved Sulphur (S)</td> <td>mg/L</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>< 0.50</td>	Dissolved Sulphur (S)	mg/L	-	-	-															< 0.50
Dissolved Thorium (Th) mg/L	Dissolved Tellurium (Te)	mg/L			-															< 0.000
Dissolved Tin (Sn) mg/L - 2.5 <th< td=""><td>Dissolved Thallium (Tl)</td><td>mg/L</td><td>0.0017</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>< 0.0000</td></th<>	Dissolved Thallium (Tl)	mg/L	0.0017	-	-															< 0.0000
Dissolved Titanium (Ti) mg/L 2 - - 0.03 0.03 0.01 <0.0015 <0.015 0.0015		mg/L	-	-	-															< 0.000
Dissolved Tungsten (Ŵ) mg/L				-	2.5															0.000
Dissolved Vranium (V) mg/L 0.3 0.02 0.02 0.02 0.02 0.02 0.01 0.014 0.00076 0.000684 0.000403 0.000374 0.0143 0.0143 0.0143 0.0143 0.0143 0.0143 0.00145 0.0143 0.		mg/L	2	-																0.0011
Dissolved Vanadium (V) mg/L 0.006 - 0.02 0.02 0.005 <0.005 0.005			-																	< 0.000
Dissolved Zinc (Zn) mg/L 0.19-0.72 (Hardness 300-1,000 mg/L) (e) 5.0, AO 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0.0	0.02											0.000.0		0.000.00		0100110	0.0007
				-	0.02															0.001
Dissolved Zirconium (Zr) mg/L 0.00033 0.00131 <0.00030 <0.0010 0.0			0.19-0.72 (Hardness 300-1,000 mg/L) (e)	5.0, AO	3															0.0043
	Dissolved Zirconium (Zr)	mg/L	-	-	-										0.00239	0.00093	0.00131	< 0.00030	< 0.0010	0.0003

Notes:

 Notes:

 2018 data compared to updated criteria

 A shaded value means exceeded the BC WQG freshwater aquatic life criteria

 A shaded value means reading exceeded the BC WQG drinking water quality criteria.

 A shaded value means reading exceeded the CSR drinking water quality criteria.

 A shaded value means exceeded dmore than one criteria.

 A shaded value means reading had detection limit exceeding criteria.

 A shaded value means reading had detection limit exceeding criteria.

 A shaded value means reading exceeded the CSR drinking water quality criteria for sampling stations that trigger the Ground Water Quality Exceedances Response Plan

 (AQ - Aesthetic Objective)

Water Quality Exceedances Response Plan
 (AO - Aesthetic Objective)
 1. BC Environment Approved and Working Criteria for Water Quality, last updated March 2018
 2. All criteria limits for BCWQG - based on Total Metal Concentration except Aluminum and Cadmium (Dissolved)
 3. BC Environment Drinking Water Guidelines and Canadian Drinking Water Standards
 4. BC Contaminated Sites Regulation for Drinking Water (BC-CSR-DW) Schedule 3.2, last updated January 2019
 c. Limit dependent on chloride concentration. (MAC - Maximum Acceptable Concentration)
 d. Limit pH and temperature dependent.
 e. Limit dependant on hadress. Range given for hardness 50 to 1,000 mg/L.
 f. Limit for chromium (IV)
 g. Limit for total, no dissolved concentrations
 h.copper (mg/L) = (0.094* Hardness/1000
 i. Jimit for hardness Saved on total dissolved CaCO³

i. Limit for hardness based on total dissolved CaCO3

lov-19	
73	
33	
6.9	
35	
1.5 9.8	
9.8	
.28	
0050	
	I
04 .67	
.07	I
	I
0269 00010	
0855	
0855 148 00010 00050	
00010	
014	
0205	
00205 72 00010	
0016	
0983 0064	
0064 4.2	
00050	
0010	
59 3.5 000050	
000050 0115	
0115 0977	
06	
.38	
0068 002	
.65	
00010	
4.4 010 0.50	
).50	
00020 00010	I
00010	I
00010 0003 0114 00010 00765	I
0114	I
00765	I
001	I
043 0033	I

Table 2. Hazelton Shallow Groundwater Ouality Data

												SGW-2						
		BC MoE Guidel	lines	BC CSR Standards														
Parameters	Units	Freshwater Aquatic Life (1) (2)	Drinking Water (2) (3)	BC CSR-DW (4)											-		-	
Date					14-Jun-17	7-Jul-17	13-Jul-17	20-Jul-17	27-Jul-17	1-Aug-17	9-Aug-17	16-Aug-17		30-May-18	10-Jul-18	16-Apr-19	12-Aug-19	21-Nov-19
Total Hardness	mg/L	-	-	-	159	410	443	477	531	309	710	630	329	175	339	582	303	334
Dissolved Hardness (CaCO3)	mg/L	-	-	-	4.40	210			1.60		100	100			100			
Alkalinity (Total as CaCO3)	mg/L	-	-	-	160	340	340	290	460	260	600	690		215	428	488	273	328
Total Organic Carbon (C)	mg/L	-	4.0	-	46.3	50	100	75	75.5	51	136	94	56	249	88	81.8	130	198
Alkalinity (PP as CaCO3) Bicarbonate (HCO3)	mg/L mg/L		-	-			-			-			150					
Carbonate (CO3)	mg/L	-	-	-														
Hydroxide (OH)	mg/L	-	-	-	-													
Chemical Oxygen Demand (COD)	mg/L mg/L		-		128	465	266	509	427	288	528	249	350	854	300	264	397	355
Biological Oxygen Demand (BOD)	mg/L		-		120	96	84	79	92	35	110	94	<20	854	500	204	331	333
Sulphate (SO4)	mg/L	128-429 (e)	500, AO	500	<1.0	30	<1.0	3.3	<1.0	<1.0	<1.0	<1.0	1.1	< 0.30	<1.5	1.6	20.9	4.4
Chloride (Cl)	mg/L mg/L	600	250, AO	250	19	12	10.5	12	14.2	10.1	17.6	17.8	7.5	4.66	7.6	123	51.1	75.0
Total Kjeldahl Nitrogen	mg/L mg/L	-	-	250	1)	12	10.5	12	14.2	10.1	17.0	17.0	1.5	4.00	7.0	120	01.1	10.0
Ammonia (N)	mg/L mg/L	0.681-28.7 (d)			0.11	2.18	1.74	0.87	2.04	1.09	2.39	2.5	0.47	1.2	3.07	0.366	0.908	0.481
Nitrate plus Nitrite (N)	mg/L mg/L			10	<0.010	0.0207	0.0468	0.046	0.0488	0.0136	0.0105	0.023	0.209	<0.0060	<0.30	0.000	0.500	9.95
Nitrite (N)	mg/L	0.06 -0.6 (max) (c)	1.0	1.0	<0.01	0.03	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	<0.0010	<0.0050	< 0.0050	0.0147	<0.0050
Nitrate (N)	mg/L mg/L	32.8	10 MAC	10	<0.01	< 0.01	0.047	0.046	0.049	0.014	0.01	0.013	0.21	< 0.0050	<0.025	<0.025	0.0717	<0.025
Conductivity	uS/cm	-	-	-	352	643	613	586	830	505	1060	1240	294					799
Field Conductivity	uS/cm	-	-	-										İ	1142	1053	625	528
pH	pH Units	6.5 - 9.0	7.0-10.5	-	7	6.6	7	7.1	6.6	6.9	6.7	6.6	6.6	İ			7.24	7.50
TSS	mg/L	25 mg/L (background 25-250 mg/l)) (i)	<500, AO	-	1	1	1	1		1			1					
Dissolved Metals																		
Dissolved Aluminum (Al)	mg/L	0.023-0.1 (b,c)	9.5	9.5										0.125	0.0099	20.7	0.123	0.0495
Dissolved Antimony (Sb)	mg/L	0.009	0.006	0.006										0.0002	< 0.00010	0.00052	0.0006	0.0002
Dissolved Arsenic (As)	mg/L	0.005	0.01 MAC	0.01										0.00821	0.00703	0.028	0.0226	0.0134
Dissolved Barium (Ba)	mg/L	1	1.0	1										0.0527	0.098	0.442	0.124	0.104
Dissolved Beryllium (Be)	mg/L	0.00013	-	0.008										< 0.00010	< 0.00010	0.00052	< 0.00010	< 0.00010
Dissolved Bismuth (Bi)	mg/L	-	-	-										< 0.000050	< 0.000050	< 0.00025	< 0.000050	< 0.000050
Dissolved Boron (B)	mg/L	1.20	5.0, MAC	5.00										0.012	0.017	0.286	0.185	0.22
Dissolved Cadmium (Cd)	mg/L	0.000027 - 0.00280 (e)	0.005	0.005										0.0000084	0.0000063	0.00037	0.0000236	0.0000066
Dissolved Calcium (Ca)	mg/L	<4 sensitive to acid input	-	-										48.8	89.8	153	80.9	90.6
Dissolved Cesium (Cs)	mg/L	-		-										< 0.000010	< 0.000010	0.000927	< 0.000010	< 0.000010
Dissolved Chromium (Cr)	mg/L	0.001 (e, f)	0.05, MAC	0.05 (VI), 6 (III)										0.00021	0.00014	0.01700	0.00043	0.00040
Dissolved Cobalt (Co)	mg/L	0.11	-	0.001										0.004	0.005	0.0197	0.00606	0.00452
Dissolved Copper (Cu)	mg/L	0.0032-0.0396 (e)	1.0, AO	1.5										0.00121	0.00501	0.0396	0.00165	0.00106
Dissolved Iron (Fe)	mg/L	0.35	0.3, AO	6.5										7.56	36.2	49.5	15.6	16
Dissolved Lead (Pb)	mg/L	0.011-0.402 (e)	0.01	0.01										0.000083	0.000295	0.00731	0.000149	0.000053
Dissolved Lithium (Li)	mg/L	-	-	0.008										< 0.0010	< 0.0010	0.0089	< 0.0010	< 0.0010
Dissolved Magnesium (Mg)	mg/L	-	-	-										13	28	49	25	26
Dissolved Manganese (Mn)	mg/L	0.8-3.4 (e)	0.05, AO	1.5										4.3	9.3	9.55	6.6	4.85
Dissolved Mercury (Hg)	mg/L	0.0001, MAC	0.001	0.001	_									<0.0000050	<0.0000050	0.0000149	0.0000076	<0.0000050
Dissolved Molybdenum (Mo)	mg/L	2	0.25	0.25	+		+		+	+	ł	+	ł	0.000647	0.0021	0.00062	0.000581	0.00017
Dissolved Nickel (Ni)	mg/L	0.025-0.15 (e)	-	0.08	+									0.0026	0.0037	0.0267	0.0049 <0.050	0.0034
Dissolved Phosphorus (P)	mg/L mg/I	0.005-0.015 (for lakes only)	0.01, AO	-	+		<u> </u>			<u> </u>					<0.050	0.69	<0.050	<0.050
Dissolved Potassium (K) Dissolved Rubidium (Rb)	mg/L mg/I	373-432	-	-		<u> </u>		<u> </u>						2.54 0.00055	3.7 0.00085	5.66 0.0105	0.00024	3.91 0.00042
Dissolved Rubidium (Rb) Dissolved Selenium (Se)	mg/L mg/L	0.002	- 0.01. MAC	0.01	+					1	ł	1	ł	0.00055	0.00085	< 0.0105	0.00024	0.00042
Dissolved Silicon (Si)		0.002	0.01, MAC	0.01	+		ł	<u> </u>	+	ł	ł	+	ł	5.55	5.47	<0.00025	7.41	6.58
Dissolved Silver (Ag)	mg/L mg/L	0.001-0.003 (e)	-	0.02	+	ł	1	ł	1	1	ł	+	ł	<0.000010	<0.000010	0.000154	<0.000010	<0.000010
Dissolved Solium (Na)	mg/L mg/L	0.001-0.005 (c)	<200, AO	200	+		1		1	1	ł	1	1	<0.000010 5.83	10.30	64.00	31.40	48.30
Dissolved Strontium (Na)	mg/L mg/L		<200, AO	2.50	1	1	1	1	1	1	t	1	1	0.2970	0.5690	1.0900	0.5940	48.30
Dissolved Sulphur (S)	mg/L		-	-	1		1			1		1		<0.50	< 0.50	<2.5	4.56	1.64
Dissolved Tellurium (Te)	mg/L	-	-	-	1		1		1	1		1		<0.00020	<0.00020	<0.0010	<0.00020	<0.00020
Dissolved Thallium (TI)	mg/L	0.0017	-	-	1		1		1	1		1		<0.00020	<0.00020	0.00	<0.00020	<0.00020
Dissolved Thantum (Th) Dissolved Thorium (Th)	mg/L mg/L	-	-	-			1			1		1	1	<0.00010	<0.00010	0.00	<0.00010	<0.00010
Dissolved Tin (Sn)	mg/L	-		2.5	1		1		1	1		1	1	<0.00010	<0.00010	< 0.00050	0.0001	0.00013
Dissolved Titanium (Ti)	mg/L	2	-	-			1			1		1	1	0.0038	0.0005	0.5630	0.0062	0.0022
Dissolved Tungsten (W)	mg/L	-		0.003	1		1		1	1		1	1	< 0.00010	< 0.00010	< 0.00050	<0.00010	< 0.00022
Dissolved Uranium (U)	mg/L	0.3	0.02	0.02	1	1	1	1	1	1	1	1	1	0.000244	0.000154	0.00108	0.000541	0.000235
Dissolved Vanadium (V)	mg/L	0.006	-	0.02	1	İ	1	İ	1	1	I	1	I	0.0020	0.0007	0.0489	0.0037	0.0020
Dissolved Zinc (Zn)	mg/L	0.19-0.72 (Hardness 300-1,000 mg/L) (e)	5.0, AO	3	1	1	1	1	1	1		1		0.0030	0.0066	0.0608	0.0050	0.0041
Dissolved Zirconium (Zr)	mg/L	-	-	-	1	1	1	1	1	1		1		0.000529	0.000197	0.00574	0.0008	0.00064
Notes:		•	·		-	-		-			-							

 Notes:

 2018 data compared to updated criteria

 A shaded value means exceeded the BC WQG freshwater aquatic life criteria

 A shaded value means reading exceeded the BC WQG drinking water quality criteria.

 A shaded value means reading exceeded the CSR drinking water quality criteria.

 A shaded value means reading texceeded thore than one criteria.

 A shaded value means reading had detection limit exceeding criteria.

 A shaded value means reading exceeded the CSR drinking water quality criteria for sampling stations that trigger the Ground Water Quality Exceedances Response Plan

 (AQ - Aesthetic Objective)

Water Quality Exceedances Response Plan
 (AO - Aesthetic Objective)
 1. BC Environment Approved and Working Criteria for Water Quality, last updated March 2018
 2. All criteria limits for BCWQG - based on Total Metal Concentration except Aluminum and Cadmium (Dissolved)
 3. BC Environment Drinking Water Guidelines and Canadian Drinking Water Standards
 4. BC Contaminated Sites Regulation for Drinking Water (BC-CSR-DW) Schedule 3.2, last updated January 2019
 c. Limit dependent on chloride concentration. (MAC - Maximum Acceptable Concentration)
 d. Limit pH and temperature dependent.
 e. Limit dependant on hadress. Range given for hardness 50 to 1,000 mg/L.
 f. Limit for chromium (IV)
 g. Limit for total, no dissolved concentrations
 h.copper (mg/L) = (0.094* Hardness/1000
 i. Jimit for hardness Saved on total dissolved CaCO³

i. Limit for hardness based on total dissolved CaCO3

		BC MoE Guideli	nes	BC CSR Standards			SGW-4				SGW-5							
arameters	Units	Freshwater Aquatic Life (1) (2)	Drinking Water (2) (3)	BC CSR-DW (4)														
ate					10-Jul-18	11-Sep-18	16-Apr-19	12-Aug-19	21-Nov-19	30-May-18	10-Jul-18	11-Sep-18	16-Apr-19	12-Aug-19	21-			
otal Hardness	mg/L	-	-	-	494	656	454	506	426	256	254	318	228	312	4			
hissolved Hardness (CaCO3)	mg/L	-	-	-	15.1	5.47	500	540	440	017	276	242	054	0.15				
Ikalinity (Total as CaCO3)	mg/L	-	-	-	454	547	523	519	418	217	276	343	254 8.55	345	_			
otal Organic Carbon (C) lkalinity (PP as CaCO3)	mg/L mg/L	-	4.0	-	10.0	9	12.6	10.5	19.2	27.4	26.7	0	8.00	7.36	4			
icarbonate (HCO3)	mg/L mg/L	-	-	-	-										-			
arbonate (CO3)	mg/L mg/L	-	-												+			
ydroxide (OH)	mg/L mg/L		_	-		-			-						+			
hemical Oxygen Demand (COD)	mg/L mg/L	-	-	-	55	24	85	72	35	90	121	<20	116	55	1			
iological Oxygen Demand (BOD)	mg/L	-	-	-											1			
Ilphate (SO4)	mg/L	128-429 (e)	500, AO	500	23.4	13.9	8.2	4.4	8	5.59	2.78	2.91	4.5	5.85	1			
hloride (Cl)	mg/L	600	250, AO	250	13	12.7	14.3	8.7	6.3	5.62	4	6.99	3.79	4.50	1			
otal Kjeldahl Nitrogen	mg/L	-	-	-					-									
mmonia (N)	mg/L	0.681-28.7 (d)	-	-	0.0298	0.0689	0.078	0.0698	0.0707	0.0179	0.0669	0.183	0.323	0.115				
itrate plus Nitrite (N)	mg/L	-	-	10	< 0.03	< 0.03			2.77	< 0.0060	< 0.0121	< 0.0083						
itrite (N)	mg/L	0.06 -0.6 (max) (c)	1.0	1.0	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0010	< 0.0010	< 0.0010	0.0305	0.0053				
itrate (N)	mg/L	32.8	10 MAC	10	< 0.025	< 0.025	<0.025	<0.025	0.049	< 0.0050	0.012	0.0073	0.358	0.013	\perp			
onductivity	uS/cm	-	-	-					690						+			
ield Conductivity	uS/cm	-	-	-	762	710	421	644	291		422	500	324	475.9	+			
H	pH Units	6.5 - 9.0	7.0-10.5	-	-	<u> </u>		7.89	8.07				<u> </u>	8.12	+			
SS issolved Metals	mg/L	25 mg/L (background 25-250 mg/l)) (i)	<500, AO	-	-										+			
issolved Metals	mc /	0.022.01.0>	0.5	0.5	0.0571	0.278	0.0051	0.0040	0.0081	0.469	0.0061	0.0026	0.0700	0.0111	4			
issolved Aluminum (Al)	mg/L mg/I	0.023-0.1 (b,c) 0.009	9.5 0.006	9.5	0.0571 0.00011	0.278	0.0051 <0.00010	<0.0040	<0.0081	0.469	0.0061	0.0026	0.0730 0.00012	0.0111				
issolved Antimony (Sb) issolved Arsenic (As)	mg/L mg/L	0.009	0.006 0.01 MAC	0.006	0.00011	0.00012	<0.00010	<0.00010	<0.00010 0.00053	0.00016	0.0001	0.00012	0.00012	0.00011				
issolved Barium (Ba)	mg/L mg/L	1	1.0	1	0.0997	0.169	0.1030	0.1320	0.104	0.0775	0.0698	0.0849	0.0555	0.0858	-			
issolved Beryllium (Be)	mg/L mg/L	0.00013	-	0.008	<0.00010	< 0.00010	<0.00010	<0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	<0.00010	<0.00010				
issolved Bismuth (Bi)	mg/L mg/L	0.00015	_	-	<0.000050	<0.000050	<0.000050	<0.00010	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<			
issolved Boron (B)	mg/L mg/L	1.20	5.0, MAC	5.00	0.017	0.024	0.017	0.02	0.015	< 0.010	< 0.010	0.01	<0.010	0.011	1			
issolved Cadmium (Cd)	mg/L	0.000027 - 0.00280 (e)	0.005	0.005	0.000030	0.0000538	0.000031	0.000017	0.0000781	0.000076	< 0.0000050	< 0.0000050	0.0000177	0.0000294	C			
issolved Calcium (Ca)	mg/L	<4 sensitive to acid input	-	-	110.0	148	100.0	109.0	102	61.3	62.1	79.7	53.7	76.9	-			
issolved Cesium (Cs)	mg/L	-		-	0.0	0.000039	< 0.000010	< 0.000010	< 0.000010	0.00008	< 0.000010	< 0.000010	0.000017	0.000012	<			
issolved Chromium (Cr)	mg/L	0.001 (e, f)	0.05, MAC	0.05 (VI), 6 (III)	< 0.00010	0.00023	< 0.00010	< 0.00010	< 0.00010	0.00053	< 0.00010	< 0.00010	0.00010	< 0.00010				
issolved Cobalt (Co)	mg/L	0.11	-	0.001	0.00842	0.00934	0.00772	0.00596	0.00107	0.005	0.00273	0.019	0.00409	0.00922				
issolved Copper (Cu)	mg/L	0.0032-0.0396 (e)	1.0, AO	1.5	0.00720	0.00212	0.00115	0.00053	0.0021	0.00212	0.00040	0.00032	0.00112	0.00102				
issolved Iron (Fe)	mg/L	0.35	0.3, AO	6.5	0.159	2.81	1.760	0.239	0.03	0.851	0.918	0.371	1.85	0.194				
issolved Lead (Pb)	mg/L	0.011-0.402 (e)	0.01	0.01	0.000399	0.000705	< 0.000050	< 0.000050	< 0.000050	0.000802	< 0.000050	< 0.000050	0.000230	0.000055	<			
issolved Lithium (Li)	mg/L	-	-	0.008	0.0022	0.002900	0.002	0.0024	0.002100	0.002000	0.0015	0.001800	0.0012	0.002				
issolved Magnesium (Mg)	mg/L	-	-	-	53.5	70	49.4	57.1	42	25	23.9	29	22.8	29.2	_			
issolved Manganese (Mn)	mg/L	0.8-3.4 (e)	0.05, AO	1.5	1.70	3.02	1.3	1.76	0.8	0.718	1.06	2.00	0.909	0.975	4			
issolved Mercury (Hg)	mg/L	0.0001, MAC	0.001 0.25	0.001 0.25	0.0000162 0.00447	0.0000133 0.00411	<0.0000050 0.00144	<0.0000050 0.0024	<0.0000050 0.00145	0.0000057 0.00169	<0.0000050 0.00363	<0.0000050 0.00381	<0.000050	<0.000050 0.00259	<			
issolved Molybdenum (Mo) issolved Nickel (Ni)	mg/L mg/L	0.025-0.15 (e)	0.25	0.25	0.00447	0.00411	0.00144	0.0024	0.00145	0.00169	0.00363	0.00381	0.00236	0.00259				
issolved Phosphorus (P)	mg/L mg/L	0.005-0.015 (for lakes only)	0.01, AO		<0.050	<0.050	< 0.00534	<0.050	<0.050	<0.050	<0.050	<0.00432	< 0.050	<0.050	_			
issolved Potassium (K)	mg/L mg/L	373-432		-	2.690	3.22	2.300	2.950	2.41	2	2.070	2.26	1.69	2.21	4			
issolved Rubidium (Rb)	mg/L mg/L	373-432			0.000	0.00048	0.00034	0.00044	0.00028	0.00042	0.000	0.00054	0.00041	0.00048				
issolved Selenium (Se)	mg/L mg/L	0.002	0.01, MAC	0.01	0.000053	0.00007	0.000055	<0.000050	0.000020	<0.000050	0.000056	< 0.000050	< 0.000050	0.000081				
issolved Silicon (Si)	mg/L mg/L	-	-	-	5.36	6.93	4.63	6.39	5.77	4.36	4.94	4.97	3.48	5.9	+			
issolved Silver (Ag)	mg/L mg/L	0.001-0.003 (e)	-	0.02	< 0.000010	0.000019	< 0.000010	< 0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<			
issolved Sodium (Na)	mg/L mg/L	-	<200, AO	200	13.7	16.50	10.9	12.3	8.24	9.48	8.3	9.52	7.11	9.26	1			
issolved Strontium (Sr)	mg/L	-	-	2.50	1.1200	1.5500	1.0700	1.1900	1.0100	0.5660	0.5880	0.7440	0.513	0.732				
issolved Sulphur (S)	mg/L	-	-	-	6.96	3.34	3.41	1.76	2.95	1.67	0.52	0.99	1.50	1.78				
issolved Tellurium (Te)	mg/L			-	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	<0.00020	<0.00020				
issolved Thallium (Tl)	mg/L	0.0017	-		< 0.000010	< 0.000010	< 0.000010	0.00001	0.000011	< 0.000010	< 0.000010	< 0.000010	<0.000010	<0.000010	<			
issolved Thorium (Th)	mg/L	-	-	-	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	<0.00010	<0.00010				
issolved Tin (Sn)	mg/L	-	-	2.5	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	<0.00010	<0.00010				
issolved Titanium (Ti)	mg/L	2	-	-	0.00142	< 0.0060	< 0.00030	< 0.00030	0.0006	0.01	< 0.00030	< 0.00030	0.00145	0.00043	_			
	mg/L	-													_			
	0		0.02															
			-															
	8																	
issolved Tungsten (W) issolved Uranium (U) issolved Anadium (V) issolved Zinc (Zn) issolved Zirconium (Zr) oftes: 018 data compared to updated cri 040 - Aesthetic Objective)	mg/L mg/L mg/L mg/L teria A shaded value A shaded value A shaded value A shaded value A shaded value	. .	ng water quality criteria. ater quality criteria. criteria.	0.003 0.02 0.02 3 -	<0.00010 0.000984 <0.00095 0.0063 <0.000060	<0.00010 0.0012 0.0009 0.0027 0.000221	<0.00010 0.000539 <0.00050 0.0022 <0.000060	<0.00010 0.000867 <0.00050 <0.0010 <0.0010 <0.00020	<0.00010 0.000761 <0.00050 0.0011 <0.00020	<0.00010 0.000407 0.00115 0.0036 <0.000060	<0.00010 0.000489 <0.00050 <0.0010 <0.0010 <0.00060	<0.00010 0.000512 <0.000050 <0.0010 <0.000060	<0.00010 0.000275 <0.00050 0.0016 <0.00060	<0.00010 0.000623 <0.00050 0.0016 <0.00020				

Table 2. Hazelton Shallow Groundwater Quality Data

Water Quality Exceedances Response Plan
 (AO - Aesthetic Objective)
 1. BC Environment Approved and Working Criteria for Water Quality, last updated March 2018
 2. All criteria limits for BCWQG - based on Total Metal Concentration except Aluminum and Cadmium (Dissolved)
 3. BC Environment Drinking Water Guidelines and Canadian Drinking Water Standards
 4. BC Contaminated Sites Regulation for Drinking Water (BC-CSR-DW) Schedule 3.2, last updated January 2019
 c. Limit dependent on chloride concentration. (MAC - Maximum Acceptable Concentration)
 d. Limit pH and temperature dependent.
 e. Limit dependant on hadress. Range given for hardness 50 to 1,000 mg/L.
 f. Limit for chromium (IV)
 g. Limit for total, no dissolved concentrations
 h.copper (mg/L) = (0.094* Hardness/1000
 i. Jimit for hardness Saved on total dissolved CaCO³

i. Limit for hardness based on total dissolved CaCO3

Table 3. Hazelton Groundwater Quality D											BI	H 01						
		BC MoE Guidelin	es	BC CSR Standards														
		Freshwater Aquatic Life (1) (2)	Drinking Water (2) (3)	BC CSR-DW (4)														
Analyte	Units				7-Jul-14	26-May-15	16-Nov-15	16-Apr-16	7-Jul-16	25-Oct-16	24-Apr-17	14-Jun-17	30-May-18	11-Jul-18	11-Sep-18	17-Apr-19	13-Aug-19	20-Nov-19
Strong Acid Dissoc. Cyanide (CN)	mg/L	-	-	-	<0.005	20-1v1ay-15	10-INOV-15	10-Api-10	/-Jul-10	25-00-10	24-Api-17	14-Juli-17	50-Way-18	11-Jui-18	11-3ep-18	17-Api-19	13-Aug-19	20-1101-15
Cyanide, total	mg/L	-	-	0.2		< 0.010	< 0.010											
Alkalinity (CaCO3)	mg/L	-	-		>1250	210	210.0	220.0	220.0	220.0	220	220	276	379	392	392	326	325
Dissolved Hardness (CaCO3)	mg/L	-	-	-	148	158	165	1.01		105	1.10	150		450				
Hardness, Total (Total as CaCO3) Chloride (Cl)	mg/L	600	- 250. AO	- 250	<1.0	2.2	5.5	171 3.3	154 3.5	175 14.7	149 3.5	158 2.4	266	270	329 <2.5	266 <0.50	265 <0.50	260 0.7
Fluoride (F)	mg/L mg/L	0.4-1.87 (e)	230, AO 1.5	1.5	<1.0	2.2	3.3	3.5	5.5	14./	3.3	2.4	0.097	0.086	<0.10	<0.30	<0.30	0.092
Sulphate (SO4)	mg/L	128-429 (e)	<500, AO	500	9.4	<1.0	<1.0	<1.0	<1.0	<1.0	1	<1.0	15.4	18.2	27.7	13.9	14.4	13.5
Conductivity	uS/cm	-	-	-	464	387	404	394	396	428	404	400						537
Field Conductivity	uS/cm	-	-	-										526	463			
Ammonia (N)	mg/L	0.68-28.7 (d)	-	-	0.07	< 0.03	0.064	0.08	< 0.03	< 0.03	< 0.03	< 0.03	0.426	0.314	0.297	0.365	0.276	0.72
Nitrate (N) Nitrite (N)	mg/L mg/L	32.8 0.06-0.6 (c)	10 MAC 1.0	10.0	0.033	0.040	0.370 <0.01	0.210 0.014	0.460	0.220	0.189 <0.01	0.018	<0.0050	0.025	<0.025 <0.0050	<0.0050 <0.0010	<0.0050 <0.0010	0.031 0.0227
Nitrate+Nitrite (N)	mg/L mg/L	0.00-0.0 (c)	-	10	<0.01	0.041	0.373	0.014	0.219	0.01	0.189	0.018	<0.0010	0.0020	<0.030	<0.0010	<0.0010	0.0227
Total Kjeldahl Nitrogen (N)	mg/L	-	-	-	0.607	<0.5	0.370	0.221	0.217	0.25	0.105	0.010	-0.0000	0.0270	.0.050			6.500
Total Phosphorous (P)	mg/L	-	0.01	<u> </u>	21.9	0.2	0.2											
Total Suspended Solids	mg/L	25 mg/L (background 25-250 mg/l)) (i)	-	-	43,000	72	72											
Total Dissolved Solids	mg/L	-	-	-	289	190	220	0.2	e :	0.0		0.1					0.00	-
pH Field pH	pH units pH units	6.5 - 9.0 6.5 - 9.0	7.0-10.5	-	7.9	8.1	8.1	8.2	8.1	8.2	8.1	8.4			8.36	7.89	8.38 7.32	8.4 7.05
Volatiles	pri units	0.5 = 9.0	7.0-10.5	-											8.50	7.09	1.32	7.05
Vinyl chloride	ug/L			2	< 0.50								< 0.00040					1
Dichloromethane	ug/L	98.1	-	50	<2.0								< 0.0050					
Benzene	ug/L	40 (a)	5 (a)	5	<0.4								< 0.00050					
Toluene	ug/L	0.5 (a)	-	60	<0.4								0.00058					L
1,4-dichlorobenzene Misc, Organics	ug/L	26	-	5	<0.5								< 0.0010					
Chemical Oxygen Demand	mg/L				471	33	<20	<20	<20	<20	<20	<20	605.00	366.00	<20	64.00	148.00	309.00
Biochemical Oxygen Demand	mg/L	-	-			55	-20	.20	120	(20	.20	-20	005.00	500.00	(20	01.00	110.00	507.00
Dissolved Organic Carbon (C)	mg/L	-	-		0.69	1.00	2.60											
Total Organic Carbon (C)	mg/L															3.61	64.40	737.00
Phenols	mg/L	50	-	1.0	< 0.001													<u> </u>
Dissolved Metals Dissolved Aluminum (Al)	mg/L	0.023-0.1 (b,c)	9.5	9.5	0.0190	0.0050	< 0.005	0.0150	0.0070	0.0150	< 0.0050	0.0075	0.0049	0.2880	0.0942	0.8990	0.0022	0.0047
Dissolved Antimony (Sb)	mg/L mg/L	0.009	0.006	0.006	0.00058	0.00060	< 0.0001	0.00010	0.00010	0.00030	<0.00010	0.00021	0.00016	0.00018	<0.00010	0.00021	<0.0022	0.00047
Dissolved Arsenic (As)	mg/L	0.005	0.01 MAC	0.01	0.00053	0.00180	0.00160	0.00210	0.00160	0.00200	0.00160	0.00181	0.00927	0.00691	0.01650	0.00845	0.00835	0.00692
Dissolved Barium (Ba)	mg/L	1	1.0	1	0.320	0.212	0.262	0.242	0.218	0.243	0.1970	0.2370	0.1130	0.1810	0.1920	0.1380	0.1940	0.1400
Dissolved Beryllium (Be)	mg/L	0.00013	-	0.008	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Dissolved Bismuth (Bi) Dissolved Boron (B)	mg/L	- 1.20	- 5.0, MAC	- 5.00	<0.0001 0.066	<0.0001 0.069	<0.0001 0.065	<0.0001 0.069	<0.0001 0.076	<0.0001 0.072	<0.00010 0.073	<0.00010 0.065	<0.000050 0.084	<0.000050 0.083	<0.000050	<0.000050 0.082	<0.000050 0.089	<0.000050 0.08
Dissolved Boron (B) Dissolved Cadmium (Cd)	mg/L mg/L	0.000027 - 0.00280 (e)	5.0, MAC 0.005	0.005	< 0.00001	0.009	0.00068	0.069	0.076	0.072	0.0073	0.00365	0.084	0.083	0.11 0.0000063	0.082	<0.000050	0.000282
Dissolved Calcium (Ca)	mg/L mg/L	<4 sensitive to acid input	-	0.005	18	18	20	20	20	20	18	20	46.8	44.6	57.8	46	40.7	43.9
Dissolved Cesium (Cs)	mg/L	-	-	-									< 0.000010	0.000023	0.000016	0.000073	< 0.000010	< 0.000010
Dissolved Chromium (Cr)	mg/L	0.001 (e, f)	0.05, MAC	0.05 (VI), 6 (III)	< 0.0010	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0006	< 0.00050	< 0.00050	< 0.00010	0.00031	0.00013	0.00087	< 0.00010	< 0.00010
Dissolved Cobalt (Co)	mg/L	0.11	-	0.001	< 0.0050	< 0.00005	0.00011	< 0.00005	< 0.00005	0.0001	< 0.00010	< 0.00010	0.00021	0.00042	0.00017	0.00056	0.00011	0.00028
Dissolved Copper (Cu)	mg/L	0.0032-0.0396 (e) 0.35	1.0, AO 0.3, AO	1.5	< 0.0050	0.0024 <0.010	0.0023	0.0014 0.019	0.0029 <0.010	0.0048	0.00213	0.00137 0.021	0.00204 0.217	0.00073	0.00094	0.00178 0.903	<0.00020 0.099	0.00047 0.196
Dissolved Iron (Fe) Dissolved Lead (Pb)	mg/L mg/L	0.35 0.011-0.402 (e)	0.3, AO 0.01	0.01	<0.01	<0.010	<0.010	0.009	<0.010	<0.010	<0.0010	<0.0010	<0.000050	0.395	0.858	0.903	<0.00050	<0.000050
Dissolved Lithium (Li)	mg/L	0.011 0.102 (0)	-	0.008	<0.005	0.0003	0.0003	0.0003	0.0004	0.0004	0.0005	0.0003	0.0014	0.0015	0.000	0.0017	0.0012	0.0012
Dissolved Magnesium (Mg)	mg/L	-	-	-	25.3	27.3	28.4	29.1	25.5	30.6	25.2	26.3	36.1	38.4	44.9	36.6	39.6	36.4
Dissolved Manganese (Mn)	mg/L	0.8-3.4 (e)	0.05, AO	1.5	0.0363	0.1280	0.0026	0.0999	0.0009	0.0069	0.0015	0.0926	0.131	0.159	0.175	0.169	0.135	0.47
Dissolved Mercury (Hg)	mg/L	0.0001, MAC	0.001	0.001	< 0.00001	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	<0.0000050	0.0000131	<0.0000050	< 0.0000050	<0.0000050	< 0.0000050
Dissolved Molybdenum (Mo) Dissolved Nickel (Ni)	mg/L	2 0.025-0.15 (e)	0.25	0.25 0.08	0.0095	0.0027 0.0016	0.0100 0.0012	0.0100 0.0004	0.0100 0.0018	0.0107 0.0047	0.0097 0.00053	0.0095 0.00084	0.00604	0.00467 0.00085	0.00339	0.00345 0.00113	0.00351 <0.00050	0.00382
Dissolved Nickel (NI) Dissolved Phosphorus (P)	mg/L mg/L	0.025-0.15 (e) 0.005-0.015 (for lakes only)	- 0.01, AO	0.06	<0.001	<0.02	0.0012	0.0004	0.0018	0.0047	< 0.00053	<0.00084	<0.00050	<0.00085	<0.00050	0.00113	<0.00050	<0.00050
Dissolved Phospholds (F) Dissolved Potassium (K)	mg/L mg/L	373-432	-	· ·	1.83	3.50	2.49	2.05	2.03	2.40	2.01	2.02	2.01	2.32	1.97	2.17	2.1	1.83
Dissolved Rubidium (Rb)	mg/L	-	-	-									0.0004	0.00061	0.00043	0.00084	0.0004	0.00033
Dissolved Selenium (Se)	mg/L	0.002	0.01, MAC	0.01	< 0.0001	0.0009	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.00050	< 0.00050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050
Dissolved Silicon (Si)	mg/L	-	-	-	1.22	9.30	1.10	1.30	1.20	1.30	1.20	1.30	4.23	4.6	6.48	5.52	3.77	3.78
Dissolved Silver (Ag) Dissolved Sodium (Na)	mg/L mg/L	0.001-0.003 (e)	- <200, AO	0.02 200	<0.00002 27.2	<0.00005 32.0	<0.00005 35.6	<0.00005	<0.00005 30.3	0.00023 41.2	<0.000050 30.5	<0.000050	<0.000010 31.5	<0.000010 30.9	<0.000010 29.8	<0.000010 30.8	<0.000010 30.7	<0.000010 29.8
Dissolved Sodium (Na) Dissolved Strontium (Sr)	mg/L mg/L	-	<200, AU	2.50	0.709	0.672	0.682	0.705	0.642	41.2	0.609	0.694	1.120	1.080	1.370	.50.8 1.190	1.150	1.050
Dissolved Subhuni (SI) Dissolved Sulphur (S)	mg/L mg/L	-	-	-	<3.0	2	<1	<1	2	<1	<3.0	<3.0	5.1	6.6	9.3	5.3	4.8	4.5
Dissolved Tellurium (Te)	mg/L	-	-	-		< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.0002	< 0.00020	< 0.00020	< 0.00020	< 0.00020	<0.00020	<0.00020	< 0.00020	< 0.00020
Dissolved Thallium (TI)	mg/L	0.0017	-	-	< 0.00005	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.000020	< 0.000020	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
	mg/L	-	-	-		< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Dissolved Thorium (Th)	mg/L	-	-	2.5	<0.005	<0.0002	<0.0002	<0.0002	0.0002	0.0002	<0.00020	<0.00020	<0.00010	0.00035	<0.00010	<0.00010	<0.00010	<0.00010
Dissolved Thorium (Th) Dissolved Tin (Sn)						< 0.005			< 0.005	< 0.005	< 0.0050	< 0.0050	< 0.00030	< 0.0063	0.00164	0.0319	< 0.00030	< 0.00030
Dissolved Thorium (Th) Dissolved Tin (Sn) Dissolved Titanium (Ti)	mg/L	2	-	- 0.002	<0.003	<0.005	<0.005	<0.005	-0.005				<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Dissolved Thorium (Th) Dissolved Tin (Sn)	mg/L mg/L	- 0.3		0.003	0.00027	0.00004	0.00004	0.00005	0.00005	0.00005	0.00006	0.00006	<0.00010	<0.00010	<0.00010	<0.00010 0.00078	<0.00010	<0.00010
Dissolved Thorium (Th) Dissolved Tin (Sn) Dissolved Titanium (Ti) Dissolved Tungsten (W)	mg/L	-								0.00005	0.00006	0.00006						
Dissolved Thorium (Th) Dissolved Tin (Sn) Dissolved Titanium (Ti) Dissolved Tungsten (W) Dissolved Uranium (U)	mg/L mg/L mg/L	0.3	- - - - - - - - - - - - - - - - - - -	0.02	0.00027	0.00004	0.00004	0.00005	0.00005	010000	010000	0100000	0.00051	0.00075	0.00105	0.00078	0.00066	0.00061

2018 data compared to up

pdated criteria	
	A shaded value means exceeded the freshwater aquatic life criteria
	A shaded value means reading exceeded the drinking water quality criteria.
	A shaded value means reading exceeded the CSR drinking water quality criteria.
	A shaded value means exceeded more than one criteria.
	A shaded value means reading had detection limit exceeding criteria.

A shaded value means reading exceeded the CSR drinking water quality criteria for sampling stations that trigger the Ground Water Quality Exceedances Response Plan

Table 3. Hazelton Groundwater Quality Da		BC MoE Guideling	35	BC CSR Standards							BH	02						
		Freshwater Aquatic Life (1) (2)	Drinking Water (2) (3)	BC CSR-DW (4)														
Analyte	Units					r	T	1			1		1	T	T			
					7-Jul-14 <0.005	26-May-15	16-Nov-15	16-Apr-16	7-Jul-16	25-Oct-16	24-Apr-17	14-Jun-17	30-May-18	11-Jul-18	11-Sep-18	17-Apr-19	13-Aug-19	20-Nov-1
Strong Acid Dissoc. Cyanide (CN)	mg/L mg/L	-	-	- 0.2	<0.005	< 0.010	< 0.010									+		
Alkalinity (CaCO3)	mg/L			0.2	1,095	530	>930	500	490	500	480	490	355	462	501	511	429	476
Dissolved Hardness (CaCO3)	mg/L		-	-	485	521	533	500	150	500	100	150	555	102	501		127	170
Hardness, Total (Total as CaCO3)	mg/L		-					548	503	550	497	508	482	479	481	482	457	478
Chloride (Cl)	mg/L	600	250, AO	250	1.0	2.0	<1.0	1.5	1.9	1.2	1.5	1.1	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Fluoride (F)	mg/L	0.4-1.87 (e)	1.5	1.5									< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Sulphate (SO4)	mg/L	128-429 (e)	<500, AO	500	69.5	63	55.1	59.8	60.3	59.3	64.1	66.5	59.7	59.5	65.8	57.3	64.3	62.4
Conductivity	uS/cm	-	-	-	938	947	941	949	944	947	936	946						812.000
Field Conductivity	uS/cm	-	-	-									837	752	704			
Ammonia (N)	mg/L	0.68-28.7 (d)	-	-	0.07	0.068	0.46	< 0.03	0.033	0.036	< 0.03	< 0.03	0.199	0.0513	0.159	0.103	0.202	0.264
Nitrate (N)	mg/L	32.8	10 MAC	10.0	0.119	0.250	0.060	0.460	0.290	0.150	0.153	0.067	< 0.025	0.139	< 0.025	0.128	0.050	0.033
Nitrite (N)	mg/L	0.06-0.6 (c)	1.0	1	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.0050	0.0056	< 0.0050	< 0.0050	0.0147	< 0.0050
Nitrate+Nitrite (N)	mg/L	-	-	10	0.502	0.253	0.055	0.459	0.286	0.146	0.153	0.067	< 0.030	0.1446	< 0.030			0.724
Total Kjeldahl Nitrogen (N) Total Phosphorous (P)	mg/L mg/I	-	- 0.01		0.502	3.83	2.680									+	+'	0.734
Total Suspended Solids	mg/L mg/L	- 25 mg/L (background 25-250 mg/l)) (i)	0.01	+	3.16	2900	7000	-								<u> </u>	<u> </u> '	+
Total Dissolved Solids	mg/L mg/L	25 mg/12 (background 25*250 mg/1) / (1)	-	-	591	2900	570							1	1	<u> </u>	<u> </u>	+
pH	pH units	6.5 - 9.0	7.0-10.5	-	7.5	7.8	7.6	7.5	7.5	7.8	7.4	7.5		1	1	+	8.12	8.11
Field pH	pH units	6.5 - 9.0	7.0-10.5		1.2										8.19	7.25	7.16	7.31
Volatiles	1																	
Vinyl chloride	ug/L			2	< 0.50			1					< 0.00040					
Dichloromethane	ug/L	98.1	-	50	<2.0								< 0.0050					
Benzene	ug/L	40 (a)	5 (a)	5	< 0.4								< 0.00050					
Toluene	ug/L	0.5 (a)	-	60	<0.4								0.00057					
1,4-dichlorobenzene	ug/L	26	-	5	< 0.5								< 0.0010					
Misc. Organics					100	101							1.48.00					40.00
Chemical Oxygen Demand	mg/L		-	-	123	136	242	25	<20	<20	<20	<20	162.00	<20	<20	38.00	96.00	40.00
Biochemical Oxygen Demand	mg/L		-	-	<0.5	1.8	4.3											-
Dissolved Organic Carbon (C)	mg/L	-	-	-	<0.5	1.8	4.5									7.83	14.10	83.20
Total Organic Carbon (C) Phenols	mg/L mg/L	50		1.0	< 0.001											1.65	14.10	65.20
Dissolved Metals	ing/L	50	-	1.0	<0.001												<u> </u>	
Dissolved Aluminum (Al)	mg/L	0.023-0.1 (b,c)	9.5	9.5	0.0030	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0050	< 0.0050	0.0042	0.0023	0.0067	0.0026	0.0128	0.0024
Dissolved Antimony (Sb)	mg/L	0.009	0.006	0.006	< 0.005	0.0005	< 0.0001	0.0003	< 0.0001	0.0002	<0.00010	0.0003	< 0.00012	<0.00010	0.00013	0.00016	0.00011	< 0.0001
Dissolved Arsenic (As)	mg/L	0.005	0.01 MAC	0.01	0.00088	0.00130	0.00120	0.00070	0.00070	0.00080	0.00076	0.00078	0.00088	0.00073	0.00078	0.00075	0.00100	0.00186
Dissolved Barium (Ba)	mg/L	1	1.0	1	0.0665	0.1470	0.0650	0.0600	0.0640	0.0680	0.0520	0.0591	0.0635	0.0681	0.0576	0.0804	0.0683	0.0568
Dissolved Beryllium (Be)	mg/L	0.00013	-	0.008	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.0001
Dissolved Bismuth (Bi)	mg/L	-	-	-	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.000050	< 0.000050	< 0.000050		< 0.000050	< 0.00005
Dissolved Boron (B)	mg/L	1.20	5.0, MAC	5.00	0.079	0.107	0.078	0.097	0.100	0.098	0.099	0.091	0.079	0.074	0.087	0.077	0.081	0.078
Dissolved Cadmium (Cd)	mg/L	0.000027 - 0.00280 (e)	0.005	0.005	0.00018	0.00022	0.00008	0.00024	0.00263	0.00002	0.000539	0.000456	0.0000174	0.000643	0.0000442	0.0000097	0.0000232	0.000046
Dissolved Calcium (Ca)	mg/L	<4 sensitive to acid input	-	-	83	87	91	92	86	87	85	88	84	78	80	84	77	82
Dissolved Cesium (Cs)	mg/L	-	-	-	0.0010	0.000#	<0.0005	0.0005	0.000#	0.000#	0.000.80	0.000.50	< 0.000010	< 0.000010	0	< 0.000010	0	0
Dissolved Chromium (Cr)	mg/L	0.001 (e, f)	0.05, MAC	0.05 (VI), 6 (III)	< 0.0010	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.00050	<0.00050	< 0.00010	< 0.00010	<0.00010	< 0.00010	<0.00010 0.00045	< 0.0001
Dissolved Cobalt (Co) Dissolved Copper (Cu)	mg/L	0.11 0.0032-0.0396 (e)	- 1.0, AO	0.001	0.00053 0.00132	0.00063 0.02220	0.00058	<0.00005	<0.00005	0.00045	<0.00010 0.00345	<0.00010 0.00171	0.0006 0.00251	<0.00010 0.00428	0.0005	0.00072	0.00045	0.00047
Dissolved Copper (Cu) Dissolved Iron (Fe)	mg/L mg/L	0.0052-0.0596 (8)	0.3, AO	6.5	<0.01	<0.010	<0.00170	<0.010	<0.00320	<0.00040	<0.00343	< 0.00171	0.00231	<0.00428	0.00033	0.00070	0.00078	0.195
Dissolved Lead (Pb)	mg/L mg/L	0.011-0.402 (e)	0.01	0.01	<0.002	0.0002	<0.0001	0.0003	<0.0001	< 0.0001	<0.00010	<0.00010	0.000124	<0.000050	<0.000050	<0.000050	0.00064	< 0.00005
Dissolved Lead (Fb)	mg/L		-	0.008	<0.005	0.0002	0.0042	0.0046	0.0046	0.0044	0.00434	0.00428	0.000124	0.0039	0.0042	0.0034	0.00004	0.0036
Dissolved Magnesium (Mg)	mg/L	-	-	-	67.2	73.9	74.3	77.5	70.1	80.9	69.0	70.0	66.2	69.0	68.5	66.3	64.6	66.5
Dissolved Manganese (Mn)	mg/L	0.8-3.4 (e)	0.05, AO	1.5	0.131	0.128	0.158	0.007	0.031	0.119	0.0058	0.0033	0.1660	0.1070	0.1550	0.194	0.176	0.145
Dissolved Mercury (Hg)	mg/L	0.0001, MAC	0.001	0.001	< 0.00001	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	0 <0.000050	0.00000
Dissolved Molybdenum (Mo)	mg/L	2	0.25	0.25	0.0027	0.0027	0.0025	0.0024	0.0026	0.0026	0.0024	0.0023	0.0023	0.0022	0.0023	0.0024	0.0023	0.0022
Dissolved Nickel (Ni)	mg/L	0.025-0.15 (e)	-	0.08	0.0013	0.0016	0.0009	0.0007	0.0032	0.0020	0.00092	0.00095	0.00086	0.00177	0.00111	0.00164	0.00109	< 0.0005
Dissolved Phosphorus (P)	mg/L	0.005-0.015 (for lakes only)	0.01, AO		< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Dissolved Potassium (K)	mg/L	373-432	-	-	2.70	3.50	2.87	3.27	2.65	2.87	2.67	2.83	2.58	2.68	2.67	2.84	2.56	2.46
Dissolved Rubidium (Rb)	mg/L	-	-	-	0.00012	0.00000	.0.000=	.0.0007	0.0005	0.0007	0.00052	0.00052	0.00	0.00	0.00	0.00	0.00	0.00
Dissolved Selenium (Se) Dissolved Silicon (Si)	mg/L	0.002	0.01, MAC	0.01	0.00013	0.00090	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.00050	<0.00050 9.20	<0.000050	0.00027 8.07	0.00011	0.00006	0.00006	<0.00005 8.17
Dissolved Silicon (Si) Dissolved Silver (Ag)	mg/L mg/I	- 0.001-0.003 (e)	-	- 0.02	7.72	9.30 <0.00005	7.70	9.00 <0.00005	8.40 <0.00005	8.90 0.00011	8.20 <0.000050	9.20	7.96 <0.000010	8.07	7.43	6.94 <0.000010	7.71	<0.0000
Dissolved Solium (Na)	mg/L mg/L	0.001-0.005 (e)	- <200, AO	200	<0.00002	28.8	<0.00005	<0.00005 29.3	<0.00005 26.0	28.2	<0.000050	<0.000050	<0.000010	24.7	23.7	25.0	23.7	24.0
Dissolved Stontium (Sr)	mg/L mg/L		<200, AO	2.50	2.06	28.8	1.96	2.05	20.0	28.2	1.750	1.980	1.950	1.750	1.890	2.030	1.820	1.870
Dissolved Sulphur (S)	mg/L mg/L		-	-	2.06	25.0	21.0	2.03	21.0	2.19	1.750	21.3	22.5	22.5	21.2	2.030	21.2	22.8
	mg/L mg/L	-		-	20.0	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.0002
Dissolved Tellurium (Te)	mg/L	0.0017	-		< 0.00005	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.000020	<0.000020	<0.000010	0.000015	< 0.000010		<0.000010	< 0.0002
Dissolved Tellurium (Te) Dissolved Thallium (Tl)	0	-	-	-	.0.00000	<0.0001	<0.0001	<0.0001	< 0.00002	< 0.0001	<0.00010	< 0.00010	<0.00010	< 0.00010	< 0.000010	<0.00010	< 0.00010	< 0.0001
Dissolved Thallium (Tl)	mg/L.			2.5	< 0.005	< 0.0002	< 0.0002	0.0003	0.0004	< 0.0001	<0.00020	0.00027	<0.00010	< 0.00010	< 0.00010	<0.00010	0.00011	< 0.0001
	mg/L mg/L																	
Dissolved Thallium (TI) Dissolved Thorium (Th) Dissolved Tin (Sn)	mg/L	- 2		-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0050	< 0.0050	< 0.00030	< 0.00030	< 0.00030	< 0.00030	< 0.00030	< 0.000
Dissolved Thallium (Tl) Dissolved Thorium (Th)	mg/L mg/L	- 2 -	-	- 0.003	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0050	< 0.0050	<0.00030 <0.00010	<0.00030 <0.00010	<0.00030 <0.00010	<0.00030 <0.00010	<0.00030 <0.00010	
Dissolved Thallium (Tl) Dissolved Thorium (Th) Dissolved Tin (Sn) Dissolved Titanium (Ti)	mg/L mg/L mg/L	- 2 - 0.3		-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.0050	<0.0050						< 0.0001
Dissolved Thallium (TI) Dissolved Thorium (Th) Dissolved Tin (Sn) Dissolved Titanium (Ti) Dissolved Tungsten (W)	mg/L mg/L	-	-	- 0.003									< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	<0.0003 <0.0001 0.0010 <0.0005
Jissolved Thallium (TI) Jissolved Thorium (Th) Jissolved Thorium (Sn) Jissolved Titanium (Ti) Jissolved Titanium (W) Jissolved Uranium (U)	mg/L mg/L mg/L mg/L	- 0.3	-	- 0.003 0.02	0.00125	0.00118	0.00118	0.00110	0.00116	0.00113	0.00112	0.00114	<0.00010 0.00113	<0.00010 0.00101	<0.00010 0.00114	<0.00010 0.00142	<0.00010 0.00115	<0.0001

2018 data cor

ompared to updated criteria	
	A shaded value means exceeded the freshwater aquatic life criteria
	A shaded value means reading exceeded the drinking water quality criteria.
	A shaded value means reading exceeded the CSR drinking water quality criteria.
	A shaded value means exceeded more than one criteria.
	A shaded value means reading had detection limit exceeding criteria.
	A shaded value means reading exceeded the CSR drinking water quality criteria for s

iteria for sampling stations that trigger the Ground Water Quality Exceedances Response Plan

- (AO Aesthetic Objective)
 1. BC Environment Approved and Working Criteria for Water Quality, last updated March 2018
 2. All criteria limits for BCWQG based on Total Metal Concentration except Aluminum, Cadmium, and Iron (Dissolved)
 3. BC Environment Drinking Water Guidelines and Canadian Drinking Water Standards
 4. BC Contaminated Sites Regulation for Drinking Water (BC-CSR-DW) Schedule 3.2, last updated January 2019
 c. Limit dependent on chloride concentration. (MAC Maximum Acceptable Concentration)
 d. Limit pH and temperature dependent.
 e. Limit dependent on achieves. Range given for hardness 50 to 1,000 mg/L.
 f. Limit for chromium (IV)
 g. Limit for chromium (IV)
 g. Limit for total, no dissolved concentrations
 h.copper (mg/L) =(0.094* Hardness)/1000
 i. Limit for hardness based on total dissolved CaCO₅
 j. BC Contaminated Sites Regulation for Drinking Water (BC-CSR-DW) Schedule 3.2 Stage 11 Amendments, last updated March 2019

Table 3. Hazelton Groundwater Quality Da		BC MoE Guidelin	es	BC CSR Standards							BH 03			
		Freshwater Aquatic Life (1) (2)	Drinking Water (2) (3)	BC CSR-DW (4)										
Analyte	Units		Driming (ruter (2) (5)	20 Cox 211 (1)										Dry
					7-Jul-14	26-May-15	16-Nov-15	16-Apr-16	25-Oct-16	24-Apr-17	14-Jun-17	30-May-18	11-Sep-18	17-Apr-19
Strong Acid Dissoc. Cyanide (CN)	mg/L	-		- 0.2	< 0.005	< 0.010	< 0.010						لـــــا	
Vyanide, total Alkalinity (CaCO3)	mg/L mg/L		-	0.2	265	240	<0.010	250	250	240	240	207	200	
Dissolved Hardness (CaCO3)	mg/L	-	-	-	216	557	239			0				
Iardness, Total (Total as CaCO3)	mg/L		-					247	236	220	242	228	177	
Chloride (Cl)	mg/L	600	250, AO	250	2.8	3.9		3.7	3.4	2.7	2.5	1.75	<2.5	
luoride (F) ulphate (SO4)	mg/L mg/L	0.4-1.87 (e) 128-429 (e)	1.5 <500, AO	1.5 500	176	180		184	181	184	223	0.080 185	<0.10 199	
Conductivity	uS/cm	-		-	837	817		829	819	813	831	185	199	
ield Conductivity	uS/cm	-	-	-								667	638	
Ammonia (N)	mg/L	0.68-28.7 (d)	-	-	0.07	0.04	0.04	< 0.03	< 0.03	< 0.03	< 0.03	0.0056	0.0067	
litrate (N)	mg/L	32.8	10 MAC	10.0	0.404	0.310	0.320	0.320	0.250	0.246	0.130	0.288	< 0.025	
Vitrite (N) Vitrate+Nitrite (N)	mg/L	0.06-0.6 (c)	1.0	1 10	< 0.01	<0.01 0.311	0.32	<0.01 0.319	<0.01 0.254	<0.01 0.246	<0.01 0.128	<0.0010 <0.289	<0.0050 <0.030	
fotal Kjeldahl Nitrogen (N)	mg/L mg/L	•	-	10	0.176	0.311	0.32	0.319	0.254	0.246	0.128	<0.289	<0.030	
Total Phosphorous (P)	mg/L mg/L	-	0.01		0.15	0.370	<0.1						I	
Fotal Suspended Solids	mg/L	25 mg/L (background 25-250 mg/l)) (i)	-	-	300	170							1	
Total Dissolved Solids	mg/L	-	-	-	542	1.3	-						I	L
H ïield pH	pH units pH units	6.5 - 9.0	7.0-10.5	-	7.9	7.7		7.7	7.8	8	7.6		8.25	
Volatiles	pH units	6.5 - 9.0	7.0-10.5										8.25	
Vinyl chloride	ug/L			2	< 0.50							< 0.00040		
Dichloromethane	ug/L	98.1	-	50	<2.0							< 0.0050	l	
Benzene	ug/L	40 (a)	5 (a)	5	<0.4							< 0.00050		
Toluene	ug/L	0.5 (a)	-	60	<0.4							0.0112	ا <u>ـــــا</u>	
1,4-dichlorobenzene Misc. Organics	ug/L	26	-	5	<0.5							< 0.0010	J	
Chemical Oxygen Demand	mg/L	-	-	-	<20	<20	<20	<20	<20	36.00	<20	<20	<20	
Biochemical Oxygen Demand	mg/L	-	-	-									I	
Dissolved Organic Carbon (C)	mg/L	-	-	-	< 0.5	1.3								
Total Organic Carbon (C)	mg/L			1.0	0.004								ا <u>ـــــا</u>	
Phenols Dissolved Metals	mg/L	50	-	1.0	< 0.001								J	
Dissolved Aluminum (Al)	mg/L	0.023-0.1 (b,c)	9.5	9.5	0.0058	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0050	0.0059	0.0074	0.0060	
Dissolved Antimony (Sb)	mg/L	0.009	0.006	0.006	< 0.005	0.0005	0.0001	0.0005	0.0005	0.00029	0.00063	0.00043	0.00036	
Dissolved Arsenic (As)	mg/L	0.005	0.01 MAC	0.01	0.00048	0.00210	< 0.0005	< 0.0005	< 0.0005	< 0.00050	< 0.00050	0.00040	0.00032	
Dissolved Barium (Ba)	mg/L	1	1.0	1	0.0347	0.3860	0.0320	0.0320	0.0350	0.0281	0.0327	0.03590	0.03090	
Dissolved Beryllium (Be) Dissolved Bismuth (Bi)	mg/L	0.00013	-	0.008	<0.0001 <0.0001	<0.0001 <0.0001	<0.0001 <0.0001	<0.0001 <0.0001	<0.0001 <0.0001	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010	<0.00010 <0.000050	
Dissolved Bismuti (B)	mg/L mg/L	1.20	5.0, MAC	5.00	0.056	0.040	0.059	0.072	0.073	0.069	0.07	0.06100	0.06700	
Dissolved Cadmium (Cd)	mg/L	0.000027 - 0.00280 (e)	0.005	0.005	0.00006	0.00007	0.00015	0.00023	0.00032	0.000141	0.000186	0.00012	0.00012	
Dissolved Calcium (Ca)	mg/L	<4 sensitive to acid input	-	-	64	141	71	72	67	65	72	68	48	
Dissolved Cesium (Cs)	mg/L	-	-	-	0.0010	0.000#	0.000#	0.000#	0.0005	0.000#0	0.000.00	< 0.000010	< 0.000010	
Dissolved Chromium (Cr) Dissolved Cobalt (Co)	mg/L	0.001 (e, f) 0.11	0.05, MAC	0.05 (VI), 6 (III) 0.001	<0.0010 <0.0050	<0.0005 0.00783	<0.0005 <0.00005	<0.0005 0.00009	<0.0005 <0.00005	<0.00050 <0.00010	<0.00050 <0.00010	<0.00010 0.00012	<0.00010 <0.00010	
Dissolved Copper (Cu)	mg/L mg/L	0.0032-0.0396 (e)	1.0, AO	1.5	0.00128	0.00783	0.00350	0.00270	0.00230	0.00069	0.00376	0.00162	0.00109	
Dissolved Iron (Fe)	mg/L	0.35	0.3, AO	6.5	< 0.01	0.03	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	
Dissolved Lead (Pb)	mg/L	0.011-0.402 (e)	0.01	0.01	< 0.0002	< 0.0001	< 0.0001	0.0004	< 0.0001	< 0.00010	< 0.00010	0.00006	< 0.000050	
Dissolved Lithium (Li)	mg/L	-	-	0.008	< 0.005	0.002	0.0017	0.0019	0.0025	0.00161	0.00191	0.00180	0.00180	
Dissolved Magnesium (Mg)	~		-			49.9	15.1	16.3	16.3	14.0 0.0014	15.0	14.1 0.03180	14.1 0.02310	
Dissolved Maganese (Mp)	mg/L	0.8.3.4 (a)	0.05 AO	-	13.7	2.07	0.0011							
Dissolved Manganese (Mn)	mg/L	0.8-3.4 (e) 0.0001_MAC	0.05, AO 0.001	- 1.5 0.001	0.0020	3.97 <0.00002	0.0011	0.0439	0.0046					
Dissolved Marganese (Mn) Dissolved Mercury (Hg) Dissolved Molybdenum (Mo)	mg/L mg/L	0.8-3.4 (e) 0.0001, MAC 2	0.05, AO 0.001 0.25	1.5 0.001 0.25		3.97 <0.00002 0.0012	0.0011 <0.00002 0.0051	0.0439 <0.00002 0.0059	0.0046 <0.00002 0.0060	<0.0002 0.0057	<0.00002 0.0060	<0.0000050 0.00534	<0.0000050 0.00513	
Dissolved Manganese (Mn) Dissolved Mercury (Hg)	mg/L	0.0001, MAC 2 0.025-0.15 (e)	0.001 0.25	0.001	0.0020	0.0012 0.0126	<0.00002 0.0051 0.001	<0.00002 0.0059 0.0016	< 0.00002	<0.00002 0.0057 0.00041	<0.00002 0.0060 0.00073	<0.0000050 0.00534 0.00077	0.00513 0.00055	
Dissolved Manganese (Mn) Dissolved Mercury (Hg) Dissolved Molybdenum (Mo) Dissolved Nickel (Ni) Dissolved Phosphorus (P)	mg/L mg/L mg/L mg/L mg/L	0.0001, MAC 2 0.025-0.15 (e) 0.005-0.015 (for lakes only)	0.001	0.001 0.25 0.08	0.0020 <0.00001 0.0071 <0.001 0.035	0.0012 0.0126 <0.02	<0.00002 0.0051 0.001 <0.02	<0.00002 0.0059 0.0016 0.020	<0.00002 0.0060 0.0021 0.030	<0.00002 0.0057 0.00041 <0.050	<0.00002 0.0060 0.00073 <0.050	<0.0000050 0.00534 0.00077 <0.050	0.00513 0.00055 <0.050	
Dissolved Manganese (Mn) Dissolved Mercury (Hg) Dissolved Molybdenum (Mo) Dissolved Nickel (Ni) Dissolved Phosphorus (P) Dissolved Potassium (K)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0001, MAC 2 0.025-0.15 (e)	0.001 0.25	0.001 0.25 0.08	0.0020 <0.00001 0.0071 <0.001	0.0012 0.0126	<0.00002 0.0051 0.001	<0.00002 0.0059 0.0016	<0.00002 0.0060 0.0021	<0.00002 0.0057 0.00041	<0.00002 0.0060 0.00073	<0.0000050 0.00534 0.00077 <0.050 2.08	0.00513 0.00055 <0.050 1.90	
Dissolved Manganese (Mn) Dissolved Mercury (Hg) Dissolved Molydenum (Mo) Dissolved Nickel (Ni) Dissolved Phosphorus (P) Dissolved Photassium (K) Dissolved Rubidium (Rb)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0001, MAC 2 0.025-0.15 (c) 0.005-0.015 (for lakes only) 373-432	0.001 0.25 	0.001 0.25 0.08	0.0020 <0.00001 0.0071 <0.001 0.035 2.13	0.0012 0.0126 <0.02 3.56	<0.00002 0.0051 0.001 <0.02 2.15	<0.00002 0.0059 0.0016 0.020 2.25	<0.00002 0.0060 0.0021 0.030 2.31	<0.00002 0.0057 0.00041 <0.050 1.98	<0.00002 0.0060 0.00073 <0.050 2.23	<0.0000050 0.00534 0.00077 <0.050 2.08 0.00049	0.00513 0.00055 <0.050 1.90 0.00051	
Dissolved Manganese (Mn) Dissolved Mercury (Hg) Dissolved Molydenum (Mo) Dissolved Nickel (Ni) Dissolved Postpherus (P) Dissolved Potassium (K) Dissolved Rubidium (Rb) Dissolved Rubidium (Rb)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0001, MAC 2 0.025-0.15 (e) 0.005-0.015 (for lakes only)	0.001 0.25	0.001 0.25 0.08	0.0020 <0.00001 0.0071 <0.001 0.035	0.0012 0.0126 <0.02	<0.00002 0.0051 0.001 <0.02 2.15 0.00050	<0.00002 0.0059 0.0016 0.020	<0.00002 0.0060 0.0021 0.030	<0.00002 0.0057 0.00041 <0.050	<0.00002 0.0060 0.00073 <0.050	<0.0000050 0.00534 0.00077 <0.050 2.08	0.00513 0.00055 <0.050 1.90	
Dissolved Manganese (Mn) Dissolved Mercury (Hg) Dissolved Molyddenum (Mo) Dissolved Nickel (Ni) Dissolved Phosphorus (P) Dissolved Phosphorus (Rb) Dissolved Rubidium (Rb) Dissolved Selenium (Se) Dissolved Silicon (Si)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0001, MAC 2 0.025-0.15 (c) 0.005-0.015 (for lakes only) 373-432	0.001 0.25 	0.001 0.25 0.08	0.0020 <0.00001 0.0071 <0.001 0.035 2.13 0.00033	0.0012 0.0126 <0.02 3.56 0.00080	<0.00002 0.0051 0.001 <0.02 2.15	<0.00002 0.0059 0.0016 0.020 2.25 0.00060	<0.00002 0.0060 0.0021 0.030 2.31 0.00050	<0.00002 0.0057 0.00041 <0.050 1.98 <0.00050	<0.00002 0.0060 0.00073 <0.050 2.23 0.00050	<0.0000050 0.00534 0.00077 <0.050 2.08 0.00049 0.00053	0.00513 0.00055 <0.050 1.90 0.00051 0.00059	
Dissolved Manganese (Mn) Dissolved Mercury (Hg) Dissolved Molydenum (Mo) Dissolved Nickel (Ni) Dissolved Potassium (K) Dissolved Rubidium (Rb) Dissolved Rubidium (Rb) Dissolved Silicon (Si) Dissolved Silicon (Si) Dissolved Silicon (Ag) Dissolved Silicon (Ma)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0001, MAC 2 0.025-0.15 (e) 0.005-0.015 (for lakes only) 373-432 0.002	0.001 0.25 	0.001 0.25 0.08 - - 0.01 - 0.02 200	0.0020 <0.00001 0.0071 <0.001 0.035 2.13 0.00033 4.01 <0.00002 113	0.0012 0.0126 <0.02 3.56 0.00080 10.20 <0.00005 87	<0.00002 0.0051 0.001 <0.02 2.15 0.00050 3.70 <0.00005 100	<0.00002 0.0059 0.0016 0.020 2.25 0.00060 4.40 <0.00005 107	<0.00002 0.0060 0.0021 0.030 2.31 0.00050 4.10 0.00008 103	<0.00002 0.0057 0.00041 <0.050 1.98 <0.00050 3.90 <0.000050 94.4	<0.00002 0.0060 0.00073 <0.050 2.23 0.00050 4.60 <0.000050 99.6	<pre><0.0000050 0.00534 0.00077 <0.050 2.08 0.00049 0.00053 3.96000 <0.000010 92.6</pre>	0.00513 0.00055 <0.050 1.90 0.00051 0.00059 3.69000 <0.000010 93.9	
Dissolved Manganese (Mn) Dissolved Meruyr (Hg) Dissolved Meruyr (Hg) Dissolved Nickel (Ni) Dissolved Nickel (Ni) Dissolved Robisphorus (P) Dissolved Robisphorus (P) Dissolved Robisphorus (Si) Dissolved Selenium (Se) Dissolved Silicon (Si) Dissolved Silicon (Si) Dissolved Soliture (Ag) Dissolved Solitur (Na)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0001, MAC 2 0.025-0.15 (e) 0.005-0.015 (for lakes only) 373-432 0.002	0.001 0.25 	0.001 0.25 0.08 - - - 0.01 - - 0.02	0.0020 <0.00001 0.0071 <0.001 0.035 2.13 0.00033 4.01 <0.00002 113 0.912	0.0012 0.0126 <0.02 3.56 0.00080 10.20 <0.00005 87 1.030	<0.00002 0.0051 0.001 <0.02 2.15 0.00050 3.70 <0.00005 100 0.893	<0.00002 0.0059 0.0016 0.020 2.25 0.00060 4.40 <0.0005 107 0.949	<0.00002 0.0060 0.0021 0.030 2.31 0.00050 4.10 0.00008 103 1.010	<0.00002 0.0057 0.00041 <0.050 1.98 <0.00050 3.90 <0.00050 94.4 0.829	<0.00002 0.0060 0.00073 <0.050 2.23 0.00050 4.60 <0.00050 99.6 0.956	<0.0000050 0.00534 0.00077 <0.050 2.08 0.00049 0.00053 3.96000 <0.000010 92.6 0.912	0.00513 0.00055 <0.050 1.90 0.00051 0.00059 3.69000 <0.000010 93.9 0.846	
Dissolved Manganese (Mn) Dissolved Mercury (Hg) Dissolved Nickel (Ni) Dissolved Nickel (Ni) Dissolved Potassium (K) Dissolved Potassium (K) Dissolved Potassium (K) Dissolved Stelenium (Se) Dissolved Silicon (Si) Dissolved Silicon (Si) Dissolved Silicon (Si) Dissolved Silicon (Si) Dissolved Silicon (Si) Dissolved Silicon (Si) Dissolved Strutium (Sr) Dissolved Strutium (Sr)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0001, MAC 2 0.025-0.15 (e) 0.005-0.015 (for lakes only) 373-432 - 0.002 - 0.0002 -	0.001 0.25 	0.001 0.25 0.08 - - 0.01 - 0.02 200	0.0020 <0.00001 0.0071 <0.001 0.035 2.13 0.00033 4.01 <0.00002 113	0.0012 0.0126 <0.02 3.56 0.00080 10.20 <0.00005 87 1.030 7.0	<pre><0.00002 0.0051 0.001 <0.02 2.15 0.00050 3.70 <0.00005 100 0.893 63.0</pre>	<0.00002 0.0059 0.0016 0.020 2.25 0.00060 4.40 <0.00005 107 0.949 71.0	<0.00002 0.0060 0.0021 0.030 2.31 0.00050 4.10 0.00008 103 1.010 68.0	<pre><0.00002 0.0057 0.00041 <0.050 1.98 </pre> <0.00050 3.90 <0.00050 94.4 0.829 59.3	<0.00002 0.0060 0.00073 <0.050 2.23 0.00050 4.60 <0.00050 99.6 0.956 69.7	<0.0000050 0.00534 0.00077 <0.050 2.08 0.00049 0.00053 3.96000 <0.000010 92.6 0.912 69.5	0.00513 0.00055 <0.050 1.90 0.00051 0.00059 3.69000 <0.000010 93.9 0.846 66.4	
Dissolved Manganese (Mn) Dissolved Mercury (Hg) Dissolved Molydenum (Mo) Dissolved Nickel (Ni) Dissolved Phosphorus (P) Dissolved Phosphorus (P) Dissolved Rubidium (Rb) Dissolved Subitium (Si) Dissolved Siliver (Ag) Dissolved Siliver (Ag) Dissolved Strontium (Sr) Dissolved Sulphar (S) Dissolved Sulphar (S)	mg/L mg/L	0.0001, MAC 2 0.025-0.15 (e) 0.005-0.015 (for lakes only) 373-432 - 0.002 - 0.001-0.003 (e) - - - - - - - - - - - - -	0.001 0.25 	0.001 0.25 0.08 - - - 0.01 - - 0.02 200 2.50 -	0.0020 <0.0001 0.0071 <0.001 0.035 2.13 0.00033 4.01 <0.00002 113 0.912 57.1	0.0012 0.0126 <0.02 3.56 0.00080 10.20 <0.00005 87 1.030 7.0 <0.0002	<0.00002 0.0051 0.001 <0.02 2.15 0.00050 3.70 <0.0005 100 0.893 63.0 <0.0002	<0.00002 0.0059 0.0016 0.020 2.25 0.00060 4.40 <0.00005 107 0.949 71.0 <0.0002	<0.00002 0.0060 0.0021 0.030 2.31 0.00050 4.10 0.00008 103 1.010 68.0 <0.0002	 <0.00002 0.0057 0.00041 <0.050 1.98 <0.00050 3.90 <0.00050 94.4 0.829 59.3 <0.00020 	<0.00002 0.0060 0.00073 <0.050 2.23 0.00050 4.60 <0.00050 99.6 0.956 69.7 <0.00020	<0.0000050 0.00534 0.00077 <0.050 2.08 0.00049 0.00053 3.96000 <0.00010 92.6 0.912 69.5 <0.00020	0.00513 0.00055 <0.050 1.90 0.00059 3.69000 <0.000010 93.9 0.846 66.4 <0.00020	
Dissolved Manganese (Mn) Dissolved Mercury (Hg) Dissolved Nickel (Ni) Dissolved Nickel (Ni) Dissolved Potassium (K) Dissolved Potassium (K) Dissolved Potassium (K) Dissolved Stelenium (Se) Dissolved Silicon (Si) Dissolved Silicon (Si) Dissolved Silicon (Si) Dissolved Silicon (Si) Dissolved Silicon (Si) Dissolved Silicon (Si) Dissolved Strutium (Sr) Dissolved Strutium (Sr)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0001, MAC 2 0.025-0.15 (e) 0.005-0.015 (for lakes only) 373-432 - 0.002 - 0.0002 -	0.001 0.25 	0.001 0.25 0.08 - - 0.01 - 0.02 200	0.0020 <0.00001 0.0071 <0.001 0.035 2.13 0.00033 4.01 <0.00002 113 0.912	0.0012 0.0126 <0.02 3.56 0.00080 10.20 <0.00005 87 1.030 7.0	<pre><0.00002 0.0051 0.001 <0.02 2.15 0.00050 3.70 <0.00005 100 0.893 63.0</pre>	<0.00002 0.0059 0.0016 0.020 2.25 0.00060 4.40 <0.00005 107 0.949 71.0	<0.00002 0.0060 0.0021 0.030 2.31 0.00050 4.10 0.00008 103 1.010 68.0	<pre><0.00002 0.0057 0.00041 <0.050 1.98 </pre> <0.00050 3.90 <0.000050 94.4 0.829 59.3	<0.00002 0.0060 0.00073 <0.050 2.23 0.00050 4.60 <0.00050 <0.00050 99.6 0.956 69.7	<0.0000050 0.00534 0.00077 <0.050 2.08 0.00049 0.00053 3.96000 <0.000010 92.6 0.912 69.5	0.00513 0.00055 <0.050 1.90 0.00051 0.00059 3.69000 <0.000010 93.9 0.846 66.4	
Dissolved Manganese (Mn) Dissolved Meruyr (Hg) Dissolved Meruyr (Hg) Dissolved Nickel (Ni) Dissolved Nickel (Ni) Dissolved Potassium (K) Dissolved Potassium (K) Dissolved Robidium (Rb) Dissolved Selenium (Se) Dissolved Silicon (Si) Dissolved Silicon (Si) Dissolved Solium (Na) Dissolved Solium (Na) Dissolved Solium (Na) Dissolved Solium (Na) Dissolved Tellurium (Te) Dissolved Tellurium (Te)	mg/L mg/L	0.0001, MAC 2 0.025-0.15 (e) 0.005-0.015 (for lakes only) 373-432 0.002 0.001-0.003 (e) - 0.001-0.003 (e) - 0.0017 - 0.0017 -	0.001 0.25 	0.001 0.25 0.08 - - 0.01 - 0.02 200 2.50 - -	0.0020 <0.0001 0.0071 <0.001 0.035 2.13 0.00033 4.01 <0.00002 113 0.912 57.1 <0.00005 <0.0005	0.0012 0.0126 <0.02 3.56 0.00080 10.20 <0.000005 87 1.030 7.0 <0.00002	<0.00002 0.0051 0.001 <0.02 2.15 0.00050 3.70 <0.00005 100 0.893 63.0 <0.0002 <0.0002 <0.0002 <0.0001	<0.00002 0.0059 0.0016 0.020 2.25 0.00060 4.40 <0.00005 107 0.949 71.0 <0.0002 0.00002 0.00002 <0.0001 0.00004	<0.00002 0.0060 0.0021 0.030 2.31 0.00050 4.10 0.00008 103 1.010 68.0 <0.0002 0.00020	<pre><0.00002 0.0057 0.00041 <0.050 1.98 </pre> <0.00050 3.90 <0.00050 94.4 0.829 59.3 <0.00020 <0.000020	<0.00002 0.0060 0.00073 <0.050 2.23 0.00050 4.60 <0.00050 99.6 0.956 69.7 <0.00020 <0.00020	<0.0000050 0.00534 0.00077 <0.050 2.08 0.00049 0.00053 3.96000 <0.000010 92.6 0.912 69.5 <0.00020 <0.00020	0.00513 0.00055 <0.050 1.90 0.00051 0.00059 3.69000 <0.000010 93.9 0.846 66.4 <0.00020 0.00001	
Dissolved Manganese (Mn) Dissolved Mercury (Hg) Dissolved Nickel (Ni) Dissolved Nickel (Ni) Dissolved Potassium (K) Dissolved Potassium (K) Dissolved Potassium (K) Dissolved Selenium (Se) Dissolved Silicon (Si) Dissolved Silicon (Si) Dissolved Silicon (Si) Dissolved Silicon (Si) Dissolved Silicon (Si) Dissolved Silicon (Si) Dissolved Strontium (Sr) Dissolved Strontium (Sr) Dissolved Tellurium (Te) Dissolved Tellurium (Te) Dissolved Thorium (Th) Dissolved Tin (Sn)	mg/L mg/L	0.0001, MAC 2 0.025-0.15 (e) 0.005-0.015 (c) lakes only) 373-432 - 0.002 - 0.001-0.003 (e) - - 0.001-0.003 (e) - - 0.0017	0.001 0.25 	0.001 0.25 0.08 - - - 0.01 - - 200 2.50 - - - - - 2.5	0.0020 <0.0001 0.0071 <0.001 0.035 2.13 0.00033 4.01 <0.0002 113 0.912 57.1 <0.0005	0.0012 0.0126 <0.02 3.56 0.00080 10.20 <0.00005 87 1.030 7.0 <0.0002 <0.00002 <0.00002	<0.00002 0.0051 0.001 <0.02 2.15 0.00050 3.70 <0.0005 100 0.893 63.0 <0.0002 <0.0002 <0.0002	<0.00002 0.0059 0.0016 0.020 2.25 0.00060 4.40 <0.0005 107 0.949 71.0 <0.0002 0.00002 <0.0002	<0.00002 0.0060 0.0021 0.030 2.31 0.00050 4.10 0.00050 4.10 0.00003 1.010 68.0 <0.0002 0.00003	<0.00002 0.0057 0.00041 <0.050 1.98 <0.00050 3.90 <0.00050 94.4 0.829 59.3 <0.00020 <0.00020 <0.00020	<0.00002 0.0060 0.00073 <0.050 2.23 0.00050 4.60 <0.000050 99.6 0.956 69.7 <0.00020 <0.00020 <0.00020	<0.0000050 0.00534 0.00077 <0.050 2.08 0.00049 0.00049 0.000010 92.6 0.000010 92.6 0.912 69.5 <0.00020 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010	0.00513 0.00055 <0.050 1.90 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00051 0.00001 93.9 0.846 66.4 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.0000001 <0.000001 <0.000001 <0.0000001 <0.000010 <0.000010 <0.0000001 <0.00000001 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.0000000 <0.000000 <0.0000000 <0.00000000 <0.0000000000	
Dissolved Manganese (Mn) Dissolved Meruy (Hg) Dissolved Meruy (Hg) Dissolved Nickel (Ni) Dissolved Nickel (Ni) Dissolved Potassium (K) Dissolved Potassium (K) Dissolved Robidium (Rb) Dissolved Selenium (Se) Dissolved Selenium (Se) Dissolved Selenium (Se) Dissolved Selenium (Na) Dissolved Selenium (Na) Dissolved Selenium (Na) Dissolved Selenium (Na) Dissolved Selenium (Na) Dissolved Thalium (Th) Dissolved Thalium (Th) Dissolved Thalium (Th) Dissolved Thalium (Th) Dissolved Thalium (Th)	mg/L mg/L	0.0001, MAC 2 0.025-0.15 (c) 0.005-0.015 (c) Takes only) 373-432 - 0.002 - 0.001-0.003 (c) - - 0.0017 - - - - - - - - - - - - -	0.001 0.25 - 0.01, AO - - - - - - - - - - - - -	0.001 0.25 0.08 - - - 0.01 - - 2.00 2.50 - - - - - 2.5 - - - - 0.03	0.0020 <0.0001 0.0071 <0.001 0.035 2.13 0.00033 4.01 <0.00002 113 0.912 57.1 <0.00005 <0.0005 <0.005	0.0012 0.0126 <0.02 3.56 0.00080 10.20 <0.00005 87 1.030 7.0 <0.0002 <0.00002 <0.00002 <0.0001 <0.0002 <0.0005	<0.0002 0.0051 0.001 <0.02 2.15 0.00050 0.00005 100 0.893 63.0 <0.00002 <0.00002 <0.00002 <0.0001 0.0005	<0.0002 0.0059 0.0016 0.020 2.25 0.00060 4.40 <0.00005 107 0.949 71.0 <0.0002 0.00002 <0.0001 0.0004 <0.0001	<0.00002 0.0060 0.0021 0.0021 0.0001 0.00050 4.10 0.00008 103 1.010 68.0 <0.0002 <0.0003 <0.0001 <0.0002 <0.005	<0.0002 .0.0057 0.00041 <0.00041 <0.00050 3.90 <0.000050 94.4 0.829 59.3 <0.00020 <0.000020 <0.000020 <0.000010 <0.000010 <0.000010	<0.0002 0.0060 0.00073 <0.050 2.23 0.00050 4.60 <0.000050 99.6 0.956 69.7 <0.00020 <0.00020 <0.00020 <0.00010 <0.00010	<0.000050 0.00534 0.00077 <0.050 2.08 0.00049 0.00053 3.96000 92.6 0.912 69.5 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.000010 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.000000 <0.0000000000	0.00513 0.00055 <0.050 1.90 0.00051 0.00059 3.69000 <0.000010 93.9 0.846 66.4 <0.00020 0.00001 0.00001 <0.00001 <0.00001 <0.00001 <0.00001 0.00003	
Dissolved Manganese (Mn) Dissolved Mercury (Hg) Dissolved Molybdenum (Mo) Dissolved Nickel (Ni) Dissolved Nickel (Ni) Dissolved Potassium (K) Dissolved Potassium (K) Dissolved Robidium (Rb) Dissolved Solitom (Se) Dissolved Solitom (Se) Dissolved Solitom (Na) Dissolved Solitom (Na) Dissolved Solitom (Na) Dissolved Solitom (Na) Dissolved Tellarium (Te) Dissolved Thorium (Th) Dissolved Transum (Ti) Dissolved Tingsten (W) Dissolved Tingsten (W)	mg/L mg/L	0.0001, MAC 2 0.025-0.15 (e) 0.005-0.15 (for lakes only) 373-432 0.002 0.0002 0.00003 (e) - 0.0017 - 2 0.0017 - 0.003 - 0.0017 - 0.0017 - 0.003 - 0.0017 - 0.003 - 0.003 - 0.0017 - 0.003 - 0.00	0.001 0.25 	0.001 0.25 0.08 - - - 0.01 - - 200 2.50 - - - - - - - - - - - - - - - - - - -	0.0020 <0.00001 0.0071 0.0035 2.13 0.00033 4.01 <0.00002 57.1 57.1 <0.00005 <0.0005 <0.005 <0.005	0.0012 0.0126 <0.02 3.56 0.00080 10.20 <0.00005 87 1.030 7.0 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.0005 <0.00002 <0.0005 <0.0005 <0.0005 <0.00002 <0.0005 <0.00002 <0.0005 <0.00002 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.	<0.00002 <0.00051 0.0051 <0.001 <0.02 2.15 <0.00050 <3.70 <0.00005 <0.00005 <100 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.0001 <0.00005 <0.0001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0002 0.0016 0.0016 0.0016 0.0016 0.0006 2.25 0.00060 4.40 <0.00005 107 0.949 71.0 <0.0002 <0.0002 <0.0002 <0.0002 <0.0004 <0.005 0.00239	 <0.00002 0.0060 0.0021 0.0030 2.31 0.00050 0.00050 	<0.0002 0.0057 0.00041 <0.050 1.98 <0.00050 3.90 <0.00050 94.4 <0.829 59.3 <0.00020 <0.00020 <0.000020 <0.000020 <0.000020 <0.000020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020	 <0.00002 0.0060 0.00073 	<0.0000050 0.00534 0.00077 <0.050 2.08 0.00049 0.00053 3.96000 <0.00010 92.6 0.912 69.5 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.000010 <0.00020 <0.00020 <0.00020 <0.000010 <0.00020 <0.00020 <0.00020 <0.000010 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.000010 <0.00020 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020000000000	0.00513 0.00055 <0.050 1.59 0.00051 0.00051 0.00051 0.000051 0.000010 93.9 0.846 66.4 <0.00020 0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.0000010 <0.0000010 <0.0000010 <0.0000010 <0.0000010 <0.0000010 <0.0000010 <0.0000010 <0.0000010 <0.0000010 <0.0000010 <0.0000010 <0.0000010 <0.0000010 <0.0000010 <0.0000010 <0.0000010 <0.0000010 <0.0000010 <0.0000010 <0.0000010 <0.0000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.0000000000	
Dissolved Manganese (Mn) Dissolved Meruy (Hg) Dissolved Meruy (Hg) Dissolved Nickel (Ni) Dissolved Nickel (Ni) Dissolved Potassium (K) Dissolved Potassium (K) Dissolved Robidium (Rb) Dissolved Selenium (Se) Dissolved Selenium (Se) Dissolved Selenium (Se) Dissolved Selenium (Na) Dissolved Selenium (Na) Dissolved Selenium (Na) Dissolved Selenium (Na) Dissolved Selenium (Na) Dissolved Thalium (Th) Dissolved Thalium (Th) Dissolved Thalium (Th) Dissolved Thalium (Th) Dissolved Thalium (Th)	mg/L mg/L	0.0001, MAC 2 0.025-0.15 (c) 0.005-0.015 (c) Takes only) 373-432 - 0.002 - 0.001-0.003 (c) - - 0.0017 - - - - - - - - - - - - -	0.001 0.25 - 0.01, AO - - - - - - - - - - - - -	0.001 0.25 0.08 - - - 0.01 - - 2.00 2.50 - - - - - 2.5 - - - - 0.03	0.0020 <0.0001 0.0071 <0.001 0.035 2.13 0.00033 4.01 <0.00002 113 0.912 57.1 <0.00005 <0.0005 <0.005	0.0012 0.0126 <0.02 3.56 0.00080 10.20 <0.00005 87 1.030 7.0 <0.0002 <0.00002 <0.00002 <0.0001 <0.0002 <0.0005	<0.0002 0.0051 0.001 <0.02 2.15 0.00050 0.00005 100 0.893 63.0 <0.00002 <0.00002 <0.00002 <0.00002 <0.00005	<0.0002 0.0059 0.0016 0.020 2.25 0.00060 4.40 <0.00005 107 0.949 71.0 <0.0002 0.00002 <0.0001 0.0004 <0.0001	<0.00002 0.0060 0.0021 0.0021 0.0001 0.00050 4.10 0.00008 103 1.010 68.0 <0.0002 <0.0003 <0.0001 <0.0002 <0.005	<0.0002 .0.0057 0.00041 <0.00041 <0.00050 3.90 <0.000050 94.4 0.829 59.3 <0.00020 <0.000020 <0.000020 <0.000010 <0.000010 <0.000010	<0.0002 0.0060 0.00073 <0.050 2.23 0.00050 4.60 <0.000050 99.6 0.956 69.7 <0.00020 <0.00020 <0.00020 <0.00010 <0.00010	<0.000050 0.00534 0.00077 <0.050 2.08 0.00049 0.00053 3.96000 92.6 0.912 69.5 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.000010 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.000000 <0.0000000000	0.00513 0.00055 <0.050 1.90 0.00051 0.00059 3.69000 <0.000010 93.9 0.846 66.4 <0.00020 0.00001 0.00001 <0.00001 <0.00001 <0.00001 <0.00001 0.00003	

Notes: 2018 data compared to updated criteria

2018 data compared to updated criteria	
	A shaded value means exceeded the freshwater aquatic life criteria
	A shaded value means reading exceeded the drinking water quality criteria.
	A shaded value means reading exceeded the CSR drinking water quality criteria.
	A shaded value means exceeded more than one criteria.
	A shaded value means reading had detection limit exceeding criteria.
	A shaded value means reading exceeded the CSR drinking water quality criteria for

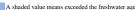
A shaded value means reading exceeded the CSR drinking water quality criteria for sampling stations that trigger the Ground Water Quality Exceedances Response Plan

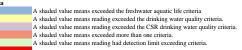
- (AO Aesthetic Objective)
 1. BC Environment Approved and Working Criteria for Water Quality. last updated March 2018
 2. All criteria limits for BCWQG based on Total Metal Concentration except Aluminum, Cadmium, and Iron (Dissolved)
 3. BC Convironment Drinking Water Guidelines and Canadian Drinking Water (ScaReAW) (Schedule 3.2, last updated January 2019
 e. Limit dependent on chloride concentration. (MAC Maximum Acceptable Concentration)
 d. Limit pH and temperature dependent.
 e. Limit dependant on hardness. Range given for hardness 50 to 1,000 mg/L.
 f. Limit for chronium (IV)
 g. Limit for total, no dissolved concentrations
 h.cooper (mg/L) = (0.094* Hardness)/1000
 i. Limit for hardness based on total dissolved CaCO₃
 j. BC Contaminated Sites Regulation for Drinking Water (BC-CSR-DW) Schedule 3.2 Stage 11 Amendments, last updated March 2019

y	Dry 13-Aug-19	Dry
or-19	13-Aug-19	20-Nov-19
	-	
-		

									BH 4A										BH 4B					
		BC MoE Guideline	es	BC CSR Standards					БП 4А										6п 46					
		Freshwater Aquatic Life (1) (2)	Drinking Water (2) (3)	BC CSR-DW (4)																				_
Analyte	Units				7-Jul-14	26-May-15	16-Nov-15	16-Apr-16	7-Jul-16	25-Oct-16	24-Apr-17	14-Jun-17	11-Sep-18	26-May-15	16-Apr-16	7-Jul-16	25-Oct-16	24-Apr-17	14-Jun-17	30-May-18	11-Jul-18	17-Apr-19	13-Aug-19	20-Nov-
trong Acid Dissoc. Cyanide (CN)	mg/L	-	-	-	< 0.005	0.010	0.010							0.010										_
Cyanide, total Alkalinity (CaCO3)	mg/L mg/I	-	-	0.2	273	<0.010 270	<0.010 270	270	270	270	270	260	277	<0.010 120	63	190	84	19	120	290	404	32	271	40
Dissolved Hardness (CaCO3)	mg/L mg/L	-			210	103	217	210	210	270	210	200	211	223	05	150	04	17	120	270	404	52	2/1	
Hardness, Total (Total as CaCO3)	mg/L		-	-				225	208	222	202	207	203		47	163	70	9	103	354	355	20	190	24
Chloride (Cl)	mg/L	600	250, AO	250	1.6	2.5	1.2	1.6	2.0	1.6	1.7	1.5	<2.5	1.1	<1.0	1.2	1.1	<1.0	1.0	0.6	1.2	0.6	<2.5	0.6
Fluoride (F) Sulphate (SO4)	mg/L mg/L	0.4-1.87 (e) 128-429 (e)	1.5 <500, AO	1.5 500	147	141	142	135	133	129	139	148	<0.10 142	<1.0	<1.0	<1.0	1.3	1.9	<1.0	0.215 0.78	0.176	0.226	<0.10 137	0.187
Conductivity	uS/cm	120-429 (c)	<500, AO	-	751	773	756	762	760	760	760	765	142	228	122	352	1.5	43.1	240	666	628	1.07	137	76.5
Field Conductivity	uS/cm	-	-	-									624											
Ammonia (N)	mg/L	0.68-28.7 (d)	-	-	0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.0050	< 0.03	0.03	0.059	< 0.03	< 0.03	0.24	0.0136	0.048	0.0491	< 0.0050	0.058
Nitrate (N) Nitrite (N)	mg/L	32.8 0.06-0.6 (c)	10 MAC 1.0	10.0	0.528	0.420	0.560	0.520 <0.01	0.220	0.340	0.462	0.160	0.458 <0.0050	<0.01	0.012	0.450	<0.01	0.023	0.012	0.021	0.018	0.015 0.001	0.460	0.015
Nitrate+Nitrite (N)	mg/L mg/L	0.08-0.8 (c)	1.0	10	<0.01	<0.01	0.555	0.523	0.464	0.341	< 0.01	0.157	<0.463	<0.01	0.012	0.037	<0.01	<0.01	0.012	<0.0010	< 0.0010	0.001	<0.0050	<0.0010
Total Kjeldahl Nitrogen (N)	mg/L		-	-	0.136	0.330	0.260	0.000		010.12	0.1.02			1.020				0.010						2.410
Total Phosphorous (P)	mg/L	-	0.01	-	0.14	0.13	0.2							0.34										
Total Suspended Solids	mg/L	25 mg/L (background 25-250 mg/l)) (i)	-	-	18 481	38	23							200										
Total Dissolved Solids	mg/L pH units	- 6.5 - 9.0	- 7.0-10.5	-	481	2 7.6	480	77	7.8	8	7.7	7.8		11.4 6.7	6.4	6.7	6.7	57	6.3				9	7
Field pH	pH units	6.5 - 9.0	7.0-10.5	-	7.7	7.0	1.7	1.1	7.0	0	1.1	7.0	8.36	0.7	0.4	0.7	0.7	5.1	0.5			6.35	7.00	6.83
Volatiles	1																							
Vinyl chloride	ug/L			2	< 0.50															< 0.00040				
Dichloromethane	ug/L	98.1	-	50	<2.0															< 0.0050				_
Benzene Toluene	ug/L ug/L	40 (a) 0.5 (a)	5 (a)	5	<0.4															<0.00050				
1,4-dichlorobenzene	ug/L ug/L	26		5	<0.5															< 0.0010				-
Misc. Organics																								
Chemical Oxygen Demand	mg/L	-	=	-	<20	<20	<20	<20	<20	<20	<20	<20	<20	63.00	64.00	59.00	65.00	<20	61.00	53	81	73	<20	80
Biochemical Oxygen Demand	mg/L	-	-	-	0.00		1.00							11.10										
Dissolved Organic Carbon (C) Total Organic Carbon (C)	mg/L mg/L	-	-	-	0.82	2.00	1.80							11.40								21.00	2.53	35.30
Phenols	mg/L mg/L	50	-	1.0	0.0011																	21.00	2.33	33.30
Dissolved Metals	0																							
Dissolved Aluminum (Al)	mg/L	0.023-0.1 (b,c)	9.5	9.5	0.0054	0.0080	< 0.005	< 0.005	< 0.005	0.0190	< 0.0050	0.0066	0.0018	0.0060	0.0410	0.0060	0.1670	0.0606	0.1400	0.0320	0.0125	0.4230	0.0728	0.4400
Dissolved Antimony (Sb)	mg/L	0.009	0.006 0.01 MAC	0.006	<0.005	0.0003	<0.0001	0.0002	0.0002	0.0004	0.00021	0.00036	0.00021	0.0005	0.0001	0.0002	0.0004	<0.00010	0.00087	0.00027	0.00021	0.00012	0.0002	0.00015
Dissolved Arsenic (As) Dissolved Barium (Ba)	mg/L mg/I	0.005	0.01 MAC 1.0	0.01	0.00048	0.00070	0.00060	0.00050	<0.0005	0.00060	<0.00050 0.0575	<0.00050 0.0653	0.00046	<0.0005	0.00130	0.00060	0.00290	<0.00050	0.00257	0.00372	0.00281	0.00288	0.00074	0.00198
Dissolved Barlain (Ba) Dissolved Beryllium (Be)	mg/L mg/L	0.00013	-	0.008	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.00010	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	010205
Dissolved Bismuth (Bi)	mg/L	-	-	-	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.000050	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.000050	< 0.000050	< 0.000050	< 0.000050	
Dissolved Boron (B)	mg/L	1.20	5.0, MAC	5.00	< 0.05	0.02	0.051	0.062	0.062	0.065	0.06	0.055	0.051	0.059	0.005	0.011	0.033	0.02	0.006	< 0.010	< 0.010	< 0.010	0.052	< 0.010
Dissolved Cadmium (Cd) Dissolved Calcium (Ca)	mg/L	0.000027 - 0.00280 (e) <4 sensitive to acid input	0.005	0.005	0.000164	0.00005	0.00009	0.00005	0.00011 56	0.00007	0.000066	0.000066	0.00005	0.00029	0.00028	0.00096 48	0.00043	0.000439	0.000356	0.000124 109	0.000709 109	0.000139	0.000193 50	0.00207
Dissolved Calcium (Ca) Dissolved Cesium (Cs)	mg/L mg/L	<4 sensitive to acid input	-		37	29	36	39	30	37	34	33	<0.000010	38	15	48	19	3	51	<0.000010	<0.000010	<0.000010	<0.000010	<0.00010
Dissolved Chromium (Cr)	mg/L	0.001 (e, f)	0.05, MAC	0.05 (VI), 6 (III)	< 0.0010	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.00050	< 0.00050	<0.00010	< 0.0005	< 0.0005	0.0006	0.0009	< 0.00050	0.00057	0.00011	< 0.00010	0.00088	0.00016	0.00081
Dissolved Cobalt (Co)	mg/L	0.11		0.001	< 0.0050	0.0141	0.00019	< 0.00005	< 0.00005	< 0.00005	< 0.00010	< 0.00010	< 0.00010	< 0.00005	0.0113	0.00973	0.0119	0.00077	0.0158	0.00887	0.00731	0.00433	0.00052	0.00100
Dissolved Copper (Cu)	mg/L	0.0032-0.0396 (e)	1.0, AO	1.5	0.00060	0.00490	0.00090	0.00140	0.00090	0.00090	0.00075	0.00065	0.00225	0.00250	0.00370	0.00410	0.04020	0.02260	0.00700	0.00243	0.00256	0.00693	0.00164	0.02130
Dissolved Iron (Fe) Dissolved Lead (Pb)	mg/L	0.35 0.011-0.402 (e)	0.3, AO 0.01	6.5	<0.01	4.25 <0.0001	<0.010	<0.010 0.0002	<0.010	<0.010	<0.010 <0.00010	<0.010 <0.00010	<0.010 0.000063	<0.010 <0.0001	4.51 0.0005	0.103	10.9 0.0012	0.214 0.00016	10.1 0.00051	5.51 0.000181	3.86 0.000053	11.4 0.000846	0.251 0.000265	3.64 0.00097
Dissolved Lead (Pb) Dissolved Lithium (Li)	mg/L mg/L	0.011-0.402 (8)	0.01	0.00	<0.0002	0.0026	0.0012	0.0002	0.0012	0.0013	0.00109	0.00121	0.000085	0.0017	0.0003	<0.0001	0.0012	0.00018	0.00031	0.000181	0.000033	0.0032	0.000285	0.00097
Dissolved Magnesium (Mg)	mg/L	-	-	-	16.6	7.3	17.5	18.9	16.8	19.3	16.2	16.8	17.0	19.4	3.5	10.1	5.2	0.00515	6.2	20.1	20.2	1.4	15.7	1.7
Dissolved Manganese (Mn)	mg/L	0.8-3.4 (e)	0.05, AO	1.5	0.0011	3.17	0.0512	0.0003	0.0034	0.0009	0.0004	0.0051	0.0005	0.0070	2.06	3.36	1.49	0.17	2.93	3.19	3.63	0.672	0.0454	0.525
Dissolved Mercury (Hg)	mg/L	0.0001, MAC	0.001	0.001	< 0.00001	< 0.00002	< 0.00002	<0.00002	< 0.00002	<0.00002	< 0.00002	<0.00002	< 0.0000050	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	<0.00002	<0.0000050		0.0000086	<0.0000050	
Dissolved Molybdenum (Mo) Dissolved Nickel (Ni)	mg/L	2 0.025-0.15 (e)	0.25	0.25 0.08	0.0043	0.0007	0.0036	0.0037	0.0037	0.0035	0.0034	0.0033	0.0033	0.0042	0.0002	0.0008	0.0003	<0.00010	0.0003	0.0006	0.0007	0.0004	0.0028	0.0002
Dissolved Nickel (NI) Dissolved Phosphorus (P)	mg/L mg/L	0.025-0.15 (e) 0.005-0.015 (for lakes only)	- 0.01, AO	0.06	<0.001	<0.02	<0.009	0.0006	0.0004	0.0013	<0.00052	<0.00596	<0.00057	0.0009	0.0193	<0.0195	0.0405	< 0.00707	<0.0457	<0.0227	<0.0154	0.0133	0.00125	0.0202
Dissolved Potassium (K)	mg/L	373-432	-		1.74	1.85	1.76	1.85	1.63	1.86	1.71	1.85	1.58	2.26	0.62	1.85	1.35	0.25	1.20	2.05	2.80	0.41	1.59	0.74
Dissolved Rubidium (Rb)	mg/L	-											0.00							0.0010	0.0012	0.0004	0.0004	0.0006
Dissolved Selenium (Se)	mg/L	0.002	0.01, MAC	0.01	0.00086	0.00060	0.00120	0.00170	0.00130	0.00160	0.00142	0.00155	0.00139	0.00210	<0.0005	<0.0005	< 0.0005	<0.00050	<0.00050	0.00011	0.00011	0.00015	0.00113	0.00016
Dissolved Silicon (Si)	mg/L mg/I	- 0.001-0.003 (e)	-	0.02	4.00	8.70 <0.00005	3.60	4.40	4.40 <0.00005	4.30 <0.00005	4.10 <0.000050	4.60 <0.000050	3.80 <0.000010	4.70 <0.00005	7.70 <0.00005	8.70 <0.00005	7.90 <0.00005	5.10 <0.000050	8.60 <0.000050	6.13 0.00002	5.99 <0.000010	5.86 <0.000010	4.00 <0.000010	7.45
Dissolved Silver (Ag) Dissolved Sodium (Na)	mg/L mg/L	0.001-0.005 (e)	- <200. AQ	200	<0.00002	<0.00005	<0.00005	<0.00005	<0.00005 95.7	<0.00005	<0.000050 94.2	<0.000050 94.9	<0.000010	<0.00005	<0.00005	<0.00005	<0.00005	<0.000050	<0.000050	0.00002	<0.000010	<0.000010	<0.000010	9.7
Dissolved Strontium (Sr)	mg/L	-	-	2.50	0.821	0.133	0.750	0.792	0.751	0.868	0.702	0.797	0.795	0.820	0.064	0.237	0.112	0.021	0.161	0.483	0.532	0.034	0.725	0.040
Dissolved Sulphur (S)	mg/L	-			40.4	2.0	46.0	53.0	46.0	54.0	44.8	49.5	47.3	56.0	<1	2.0	<1	<3.0	<3.0	< 0.50	0.8	< 0.50	45.2	1.0
Dissolved Tellurium (Te)	mg/L	-	-	-		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.00020	< 0.00020	<0.00020	< 0.0002	< 0.0002	<0.0002	< 0.0002	< 0.00020	<0.00020	< 0.00020	< 0.00020	<0.00020	< 0.00020	<0.00020
Dissolved Thallium (TI) Dissolved Thorium (Th)	mg/L	0.0017	-	-	< 0.00005	<0.0002	<0.00002 <0.0001	<0.00002 <0.0001	<0.00002 <0.0001	0.00002	<0.000020 <0.00010	<0.000020 <0.00010	0.000011 <0.00010	<0.00002 <0.0001	0.00002	0.00005	0.00002 0.0003	<0.000020 <0.00010	0.000031 0.00018	0.000018	0.000021 <0.00010	<0.000010 0.00044	0.000011 <0.00010	0.000015
Dissolved Thorium (Th) Dissolved Tin (Sn)	mg/L mg/L	-		2.5	< 0.005	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0003	<0.00010	<0.00018	<0.00010	<0.00010	0.00044	<0.00010	0.00079
Dissolved Titanium (Ti)	mg/L mg/L	2		-	<0.005	<0.005	<0.0002	<0.005	< 0.0002	<0.005	<0.0050	<0.0050	<0.00010	<0.005	<0.002	< 0.005	<0.002	<0.0050	<0.0050	< 0.00243	0.00035	0.00011	0.00243	0.00013
Dissolved Tungsten (W)	mg/L	-	-	0.003									< 0.00010							< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Dissolved Uranium (U)	mg/L	0.3	0.02	0.02	0.00370	0.00007	0.00351	0.00338	0.00363	0.00357	0.00338	0.00346	0.00331	0.00352	0.00009	0.00046	0.00040	0.00006	0.00044	0.00247	0.00177	0.00060	0.00337	0.00072
Dissolved Vanadium (V)	mg/L	0.006	-	0.02	< 0.005	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.0010	< 0.0010	< 0.00050	< 0.001	<0.001	< 0.001	0.002	< 0.0010	0.0013	0.00141	0.0008	0.00282	0.00068	0.00242
Dissolved Zinc (Zn) Dissolved Zirconium (Zr)	mg/L	0.19-0.72 (Hardness 300-1,000 mg/L) (e)	5 AO	3	< 0.005	0.024	< 0.004	<0.004	< 0.004	< 0.004	<0.0040	<0.0040	0.0041	0.005	0.007	0.007	0.12	0.0819	0.0132	0.0048	0.0124	0.0051	0.0068	0.0103
	mg/L		-	-	< 0.0005	0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.00010	< 0.00010	< 0.000060	< 0.0001	0.0007	0.0002	0.0012	0.0004	0.00099	0.000864	0.000481	0.00202	< 0.00020	0.00153

2018 data compared to updated criteria


A shaded value means exceeded the freshwater aquatic life criteria A shaded value means reading exceeded the drinking water quality criteria. A shaded value means xeeding exceeded the CSR drinking water quality criteria. A shaded value means xeeded more than one criteria.


A shaded value means reading exceeded the CSR drinking water quality criteria for sampling stations that trigger the Ground Water Quality Exceedances Response Plan

(AO - Aesthetic Objective)
(AO - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Objective)
(AD - Aesthetic Obje

		BC MoE Guideline	s	BC CSR Standards							В	H 5B			
		Freshwater Aquatic Life (1) (2)	Drinking Water (2) (3)	BC CSR-DW (4)											
Analyte	Units				7-Jul-14	26-May-15	16-Nov-15	16-Apr-16	7-Jul-16	25-Oct-16	24-Apr-17	14-Jun-17	30-May-18	11-Jul-18	11-Sep-18
trong Acid Dissoc. Cyanide (CN)	mg/L	-	-	-	< 0.005						1				
yanide, total	mg/L	-	-	0.2		< 0.010	< 0.010								
lkalinity (CaCO3)	mg/L	-	-	-	784	540	800	710	910	330	560	560	232	795	801
issolved Hardness (CaCO3)	mg/L	-	-	-	756	239	853	0.05	000	502	<00		211	892	025
ardness, Total (Total as CaCO3) hloride (Cl)	mg/L mg/L	600	- 250. AQ	- 250	140	114	177	885 204	898 198	502	608 243.0	665 236.0	311 21.4	244.0	825 205.0
luoride (F)	mg/L mg/L	0.4-1.87 (e)	1.5	1.5	140	114	1//	204	198	2.39	243.0	230.0	0.119	<0.20	<0.20
ulphate (SO4)	mg/L	128-429 (e)	<500, AO	500	3.5	5.5	10.4	2	2.2	21.6	1.1	1.4	23.3	<3.0	5.2
onductivity	uS/cm	-	-	-	1,700	128	1,880	1,740	1,990	1,360	1650	1620			
ield Conductivity	uS/cm	-	-	-										1409	1154
mmonia (N)	mg/L	0.68-28.7 (d) 32.8		- 10.0	0.29 <0.02	<0.03 0.01	0.29 <0.01	<0.03 0.014	<0.03 <0.01	0.042 0.029	<0.03 <0.01	<0.03 <0.01	0.0302 <0.0050	0.0217 <0.050	0.0486
litrate (N) litrite (N)	mg/L mg/L	32.8 0.06-0.6 (c)	10 MAC 1.0	10.0	<0.02	< 0.01	< 0.01	<0.014	<0.01	<0.029	<0.01	<0.01	<0.0050	<0.050	<0.050
Vitrate+Nitrite (N)	mg/L mg/L	-	-	10	<0.01	0.013	<0.010	0.014	<0.010	0.029	<0.01	<0.01	<0.006	<0.060	<0.010
otal Kjeldahl Nitrogen (N)	mg/L		-	-	1.060	0.580	2.630								
Cotal Phosphorous (P)	mg/L	-	0.01	-	0.42	0.35	3.2								
otal Suspended Solids	mg/L	25 mg/L (background 25-250 mg/l)) (i)		-	340	200	430							L	<u> </u>
otal Dissolved Solids	mg/L	-	-	-	928	16.4	1000	6.0	6.0	7.0	15	6.0		───	
H ield pH	pH units pH units	6.5 - 9.0 6.5 - 9.0	7.0-10.5	-	7.1	6.9	7.3	6.8	6.9	7.2	6.5	6.8		<u> </u>	7.73
olatiles	pri units	0.5 - 9.0	7.0-10.3												
'inyl chloride	ug/L			2	< 0.50								< 0.0004		1
vichloromethane	ug/L	98.1	-	50	<2.0								< 0.0050		
Benzene	ug/L	40 (a)	5 (a)	5	<0.4								< 0.00050		
Foluene	ug/L	0.5 (a)	-	60	<0.4								0.00291		
,4-dichlorobenzene Misc. Organics	ug/L	26	-	5	<0.5								< 0.0010	L	<u> </u>
Themical Oxygen Demand	mg/L				62	59	164	58	49	48	60.00	60.00	220.00	50.00	31.00
Biochemical Oxygen Demand	mg/L		-		02	57	101	50	12	10	00.00	00.00	220.00	50.00	51.00
Dissolved Organic Carbon (C)	mg/L	-	-	-	10.8	16.4	21.3								
otal Organic Carbon (C)	mg/L														
Phenols	mg/L	50	-	1.0	0.0065										<u> </u>
Dissolved Metals	m a A	0.022.0.1.(5-2)	9,5	9.5	< 0.003	< 0.005	< 0.005	< 0.005	<0.005	0.007	< 0.0050	0.0154	0.0076	0.0054	0.0024
Dissolved Aluminum (Al) Dissolved Antimony (Sb)	mg/L mg/L	0.023-0.1 (b,c) 0.009	9.5	9.5	< 0.003	<0.005	<0.005	<0.005	<0.005	0.007	<0.0050	0.0154	0.0076	0.00054	0.0024
Dissolved Arsenic (As)	mg/L	0.005	0.01 MAC	0.01	0.00346	< 0.0005	0.01020	0.00410	0.00240	0.00410	0.00230	0.00394	0.00111	0.00918	0.01130
Dissolved Barium (Ba)	mg/L	1	1.0	1	0.179	0.032	0.336	0.196	0.179	0.639	0.2810	0.1550	0.0658	0.2890	0.2880
Dissolved Beryllium (Be)	mg/L	0.00013	-	0.008	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Dissolved Bismuth (Bi)	mg/L	-	-	-	<0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.000050	< 0.000050	<0.000050
Dissolved Boron (B) Dissolved Cadmium (Cd)	mg/L	1.20 0.000027 - 0.00280 (e)	5.0, MAC 0.005	5.00	<0.05	0.07	0.024	0.014	0.015	0.048	0.027	0.014	0.015	0.01	0.015
Dissolved Calcium (Ca)	mg/L mg/L	<4 sensitive to acid input	0.003	0.005	205	70	220	228	236	126	162	180	71	229	205
Dissolved Cesium (Cs)	mg/L	-	-	-	200	70	220	220	250	120	102	100	<0.000010	< 0.000010	<0.000010
Dissolved Chromium (Cr)	mg/L	0.001 (e, f)	0.05, MAC	0.05 (VI), 6 (III)	< 0.0010	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.00050	< 0.00050	< 0.00010	< 0.00010	< 0.00010
Dissolved Cobalt (Co)	mg/L	0.11	-	0.001	0.0134	< 0.00005	0.0121	0.0183	0.0368	0.0108	0.013	0.013	0.011	0.00645	0.00301
Dissolved Copper (Cu)	mg/L	0.0032-0.0396 (e)	1.0, AO	1.5	< 0.0050	0.0027	0.0014	0.0014	< 0.0002	0.0133	0.02670	0.00024	0.00235	0.00050	0.00026
Dissolved Iron (Fe) Dissolved Lead (Pb)	mg/L mg/L	0.35 0.011-0.402 (e)	0.3, AO 0.01	6.5 0.01	0.109	<0.010	13.0 <0.0001	15.8 0.0002	0.017 <0.0001	2.3	5.1 <0.00010	10.7 <0.00010	0.02	10.9	<0.000050
Dissolved Lead (Pb) Dissolved Lithium (Li)	mg/L mg/L	0.011-0.402 (e)	0.01	0.01	<0.0002	<0.0001 0.0018	<0.0001 0.0031	0.0002	0.0001	<0.0001	<0.00010 0.00207	<0.00010	0.00089	<0.000050	<0.000050
Dissolved Magnesium (Mg)	mg/L mg/L	-	-	-	59.0	15.6	74.1	76.5	75.2	45.3	49.5	52.5	32.4	77.6	76.0
Dissolved Manganese (Mn)	mg/L	0.8-3.4 (e)	0.05, AO	1.5	4.57	0.0135	5.35	5.98	5.96	2.38	5.07	5.81	1.74	5.01	4.51
Dissolved Mercury (Hg)	mg/L	0.0001, MAC	0.001	0.001	< 0.00001	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	0.0000082	< 0.0000050	< 0.0000050
Dissolved Molybdenum (Mo)	mg/L	2	0.25	0.25	0.0036	0.0063	0.0073	0.0019	0.0025	0.0016	0.0016	0.0004	0.0047	0.0011	0.0011
Dissolved Nickel (Ni)	mg/L	0.025-0.15 (e)	-	0.08	0.0141	0.0008	0.0173	0.0233	0.0306	0.0284	0.0183	0.0195	0.00381	0.00811	0.00513
Dissolved Phosphorus (P) Dissolved Potassium (K)	mg/L mg/L	0.005-0.015 (for lakes only) 373-432	0.01, AO	-	<0.01 4.22	0.03	<0.02 5.39	<0.02 4.39	<0.02 4.36	<0.02 4.78	<0.050 2.41	<0.050 2.50	<0.050 2.13	<0.050 3.58	0.111 3.37
Dissolved Rubidium (Rb)	mg/L mg/L	-	-		4.22	2.05	5.59	4.35	4.30	4.70	2.41	20	0.00	0.00	0.00
Dissolved Selenium (Se)	mg/L	0.002	0.01, MAC	0.01	< 0.0001	0.0012	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.00050	< 0.00050	0.00011	0.00011	0.00009
Dissolved Silicon (Si)	mg/L		-	-	8.89	4.60	9.60	11.10	10.70	9.10	9.50	11.30	3.21	10.10	8.75
Dissolved Silver (Ag)	mg/L	0.001-0.003 (e)	=	0.02	< 0.00002	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.000050	< 0.000050	< 0.000010	< 0.000010	0.000028
Dissolved Sodium (Na)	mg/L	-	<200, AO	200	77.0	105.0	115.0	111.0	105.0	113.0	94.8	94.5	12.4	106.0	95.7
Dissolved Strontium (Sr) Dissolved Sulphur (S)	mg/L	-	-	2.50	1.61	0.89	1.67	1.68 <1	1.69	1.06	1.040 <3.0	1.230 <3.0	0.713 8.8	1.680	1.700
Dissolved Tellurium (Te)	mg/L mg/L	-			<3.0	<0.0002	<0.0002	<1 <0.0002	<0.0002	<0.0002	<0.00020	<0.00020	8.8 <0.00020	<0.00020	<0.00020
Dissolved Thallium (TI)	mg/L mg/L	0.0017			< 0.00005	<0.0002	<0.0002	<0.0002	0.00002	<0.0002	<0.00020	0.000020	<0.000010	<0.00020	<0.00020
Dissolved Thorium (Th)	mg/L	-		-		< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Dissolved Tin (Sn)	mg/L	-	-	2.5	< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.00020	< 0.00020	< 0.00010	< 0.00010	< 0.00010
Dissolved Titanium (Ti)	mg/L	2		-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0050	< 0.0050	< 0.00030	< 0.00030	< 0.00030
Dissolved Tungsten (W)	mg/L	-	-	0.003	0.000.00	0.000001	0.00010	0.000.18	0.000271	0.00000	0.00080	0.00100	< 0.00010	< 0.00010	<0.00010
Dissolved Uranium (U)	mg/L	0.3	0.02	0.02	0.00063	0.00231	0.00210	0.00047	0.00051	0.00235	0.00070	0.00108	0.00065	0.00175	0.00221
Dissolved Vanadium (V) Dissolved Zinc (Zn)	mg/L mg/L	0.006 0.19-0.72 (Hardness 300-1,000 mg/L) (e)	- 5 AO	0.02	<0.005	<0.001 <0.004	<0.001 0.032	<0.001 <0.004	<0.001 0.005	<0.001 0.211	<0.0010 0.0953	<0.0010 0.0054	<0.00050	<0.00050 0.0079	<0.00050 0.0017
Dissolved Zince (Zn) Dissolved Zirconium (Zr)	mg/L		-	-	< 0.005	<0.004	0.032	<0.004	0.0003	0.211	0.0933	0.00023	<0.002	0.00079	0.0017
					10.0000	10.0001	0.0011	0.0001	0.0001	0.0002	0.00017	0.00025	10.000000	5.000550	0.000170

2018 data compared to updated criteria

A shaded value means reading exceeded the CSR drinking water quality criteria for sampling stations that trigger the Ground Water Quality Exceedances Response Plan

- (AO Aesthetic Objective)
 1. BC Environment Approved and Working Criteria for Water Quality, last updated March 2018
 2. All criteria limits for BCWQG based on Total Metal Concentration except Aluminum, Cadmium, and Iron (Dissolved)
 3. BC Environment Drinking Water Guidelines and Canadian Drinking Water Standards
 4. BC Contaminated Sites Regulation for Drinking Water (BC-CSR-DW) Schedule 3.2, last updated January 2019
 c. Limit dependent on achieves. Range given for hardness 50 to 1,000 mg/L.
 f. Limit for chromium (IV)
 g. Limit for thermatics. Range given for hardness 50 to 1,000 mg/L.
 f. Limit for chromium (IV)
 g. Limit for thermation (International Concentrations
 h.copper (mg/L) = (0.094* Hardness)/1000
 i. Limit for hardness based on total dissolved CaCO₃
 j. BC Contaminated Sites Regulation for Drinking Water (BC-CSR-DW) Schedule 3.2 Stage 11 Amendments, last updated March 2019

o-18	17-Apr-19	13-Aug-19	20-Nov-19
, 10		15 145 17	20110117
l	650	452	592
5	716	614	719
.0	163.0	226.0	215.0
20	<0.10	<0.10	<0.10
	37.5	7.8	1570
4			
86	0.0374	0.0285	0.078
50 10	<0.025 <0.0050	<0.025 <0.0050	<0.025 <0.0050
60	.0.0050	10.0000	0.00000
			1.610
3		7.94	8.01
	6.6	6.64	6.67
-		-	
0	35	47	31
	13.10	10.10	9.35
24	0.018	0.0098	0.0072
24	0.0026	0.0098	0.0072
30	0.00570	0.00626	0.00773
80	0.246	0.252	0.281
010 050	<0.00010 <0.000050	<0.00010	<0.00010 <0.000050
5	0.016	0.012	0.015
0050	0.0000198	0.0000295	0.0000611
5 010	183 <0.000010	154 <0.000010	188 <0.000010
010	<0.00010	0.00010	<0.00010
01	0.00958	0.00483	0.00409
26	0.0004	0.00041	0.00116
050	<0.000050	0.00009	0.00005
050 29	0.002	0.002	0.002
0	63.1	55.8	60.6
0050	1.83 <0.0000050	0.0000062	3.62 <0.0000050
11	0.00093	0.000282	0.00025
13	0.01410	0.00430	0.00332
1	<0.050 3.26	0.135 3.32	0.145 3.59
)	0.00047	0.00066	0.0006
09	0.000401	0.00233	0.000158
; 028	6.73 <0.000010	7.83 <0.000010	8.51 <0.000010
028 7	<0.000010 89.900	87.900	8/1 900
0	1.55	1.27	1.55
0.20	19.5	6.07	1.09
020	<0.00020 <0.000010	<0.00020	<0.00020 <0.000010
010	<0.00010	<0.00010	< 0.00010
010	< 0.00010	0.000	0.000
030	0.00033	0.00031	<0.00030
010 21	<0.00010 0.00500	<0.00010 0.00245	<0.00010 0.00137
050	< 0.00050	0.001	< 0.00050
17			
	0.0026	0.0016	0.0065
17 196			

Table 4. Wetland #4 Water Qu		BC MOE	BC MoE Guidelines (a		Wetland 4	Wetland 4	Wetland 4	Wetland 4	Wetland 4	Wetland 4	Wetland 4	Wetland 4
Parameters	Units	OC Criteria	Freshwater Aquatic Life	Drinking Water	Wettanu 4	wenand 4	Wettanu 4	Wettand 4	Wettanu 4	Wettanu 4	DUP	Wettand 4
Date	Cinto		Treshwater Treatile Bit	Dinning Huter	13-Sep-18	22-Jul-19	31-Jul-19	7-Aug-19	22-Aug-19	16-Sep-19	16-Sep-19	12-Nov-19
Total Hardness	mg/L		-	-	390	250	236	248	249	293	290	191
Dissolved Hardness (CaCO3)	mg/L		-	-								
Alkalinity (Total as CaCO3)	mg/L		-	-	518	261	259	263	262	284	283	193
Total Organic Carbon (C)	mg/L		+/- 20% of background	4.0	52	23	20	20	16	15	17	10
Alkalinity (PP as CaCO3)	mg/L		-	-								
Bicarbonate (HCO3)	mg/L		-	-								
Carbonate (CO3)	mg/L		-	-								
Hydroxide (OH)	mg/L		-	-								
Chemical Oxygen Demand	mg/L		-	-		69	82	45	43	51	56	28
BOD	mg/L		-	-		2.7	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Dissolved Oxygen (DO)	mg/L					3.4	2.3	3	4.8	4.1		1.2
Dissolved Sulphate (SO4)	mg/L		128-429 (e)	500, AO	17.2	9.43	7.64	8.34	10.7	24.5	24.7	22.5
Dissolved Chloride (Cl)	mg/L	3750	600	250, AO	286	59.5	58.6	58.8	54.8	103	103	43.5
Total Kjeldahl Nitrogen	mg/L	60	-	-								
Ammonia (N)	mg/L	30	0.681-28.7 (d)	-	8.61	0.244	0.166	0.0877	0.131	2.81	2.71	0.0912
Nitrate plus Nitrite (N)	mg/L		-	-	0.186	-	-	1.29	1.36	3.75	3.92	1.51
Nitrite (N)	mg/L		0.06 -0.6 (c)	1.0	0.114	0.0015	<0.0010	< 0.0010	0.0054	0.0404	0.0425	0.0129
Nitrate (N)	mg/L	+	32.8	10 MAC	0.072	0.0191	0.007	<0.0050	0.094	0.145	0.141	1.02
Orthophosphorous	mg/L	+		↓I		0.0019	< 0.0010	<0.0010	< 0.0010	0.0022	0.0045	0.0056
Conductivity	uS/cm		-	-		-	-	645	-		0.1.5	532
pH	pH Units	6.5 - 8.5	6.5 - 9.0	7.0-10.5	7.9	8.35	8.57	8.4	8.46	8.16	8.15	8.23
TSS	mg/L		25 mg/L (background 25-250 mg/l)) (i)	<500, AO								L
Lethal Toxicity Testing												
LC-50	%v/v	100%								>100		
Total Metals	_											
Total Aluminum	mg/L		0.023-0.1 (b,c)	9.5	0.53	0.69	0.13	0.06	0.18	0.11	0.16	0.64
Total Antimony (Ab)	mg/L		0.270	0.006	0.00085	0.00028	0.00026	0.00023	0.00018	0.00023	0.00022	0.00025
Total Arsenic (As)	mg/L		0.005	0.01 MAC	0.0278	0.00764	0.0054	0.00489	0.00278	0.00201	0.00204	0.00121
Total Barium (Ba)	mg/L		1	1.0	0.953	0.122	0.111	0.104	0.104	0.118	0.112	0.0718
Total Beryllium (Be)	mg/L		0.00013	-	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Total Bismuth (Bi)	mg/L		-	-	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050
Total Boron (B)	mg/L		1.2	5.0, MAC	2.42	0.592	0.533	0.575	0.48	0.556	0.547	0.251
Total Cadmium (Cd)	mg/L	0.1	0.000027 - 0.00280 (e)	0.005, MAC	0.00001	0.00002	< 0.0000050	0.00001	0.00001	0.00001	0.00001	0.00002
Total Calcium (Ca)	mg/L		<4 sensitive to acid input	-	69.2	66.2	62.9	66.2	66.6	83	80.7	52.7
Total Cesium (Cs)	mg/L		-	-	0.000085	0.000055	0.000011	< 0.000010	0.000015	0.000024	0.000027	0.000054
Total Chromium (Cr)	mg/L		0.001 (f)	0.05, MAC	0.0022	0.0008	0.0003	0.0002	0.0003	0.0003	0.0004	0.0006
Total Cobalt (Co)	mg/L		0.11	-	0.002	0.00088	0.00049	0.00038	0.00032	0.0007	0.0006	0.00045
Total Copper (Cu)	mg/L		0.0032-0.0396 (e)	1.0, AO	0.00197	0.0019	0.0008	0.00075	0.00122	0.00173	0.00173	0.00278
Total Iron (Fe)	mg/L	4.5	1	0.3, AO	2.17	1.93	1.02	0.68	0.53	0.35	0.34	0.57
Total Lead (Pb)	mg/L		0.011-0.402 (e)	0.01	0.00022	0.000336	0.00016	0.00009	0.00013	0.000091	0.000091	0.000173
Total Lithium (Li)	mg/L		-	-	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Total Magnesium (Mg)	mg/L		-	-	49.5	20.6	19.2	20	20	20.9	21.4	14.5
Total Manganese (Mn)	mg/L		0.8-3.4 (e)	0.05, AO	2.1	1.3	0.8	0.6	0.1	0.6	0.1	0.2
Total Mercury (Hg)	mg/L.		0.0001	0.001	0.000008	0.000007	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	0.000007
Total Molybdenum (Mo)	mg/L		2	0.25	0.00264	0.00158	0.0013	0.00109	0.001	0.00121	0.00134	0.00081
Total Nickel (Ni)	mg/L		0.025-0.15 (e)	-	0.0173	0.00461	0.00373	0.00359	0.00356	0.00438	0.00463	0.00261
Total Phosphorus (P)	mg/L		0.005-0.015 (for lakes only)	0.01, AO	0.222	0.075	< 0.050	< 0.050	0.051	< 0.050	< 0.050	< 0.050
Total Potassium (K)	mg/L		-	-	38.8	8.93	8.53	7.92	7.13	8.9	9.39	5.4
Total Rubidium (Rb)	mg/L				0.00559	0.00113	0.00077	0.00073	0.00084	0.00182	0.00203	0.00088
Total Selenium (Se)	mg/L		0.002	0.01, MAC	0.000223	0.000179	0.000133	8.10E-05	0.000118	0.000172	0.000134	0.000109
Total Silicon (Si)	mg/L		-	-	7.31	4.1	2.78	2.73	2.87	2.92	3.17	3.33
Total Silver (Ag)	mg/L		0.0001-0.003 (e)	-	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Total Sodium (Na)	mg/L		-	<200, AO	225	45.8	42.7	43.3	43.1	52.1	56.1	31
Total Strontium (Sr)	mg/L		-	-	0.867	0.535	0.514	0.508	0.485	0.652	0.638	0.38
Total Sulphur (S)	mg/L		-	-	8.54	4.12	3.5	3.3	4.62	9.79	9.97	7.63
Total Tellurium (Te)	mg/L			-	< 0.00020	< 0.00020	< 0.00020	0.00021	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Total Thallium (Tl)	mg/L		0.0008	-	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010	0.000028	< 0.000010
Total Thorium (Th)	mg/L		-	-	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Total Tin (Sn)	mg/L		-	-	0.00017	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Total Thi (bil)	mg/L				0.00807	0.0123	0.00207	0.00105	0.00257	< 0.0015	< 0.0024	0.011
Total Tungsten (W)		-		1 1		< 0.00010	< 0.00010	< 0.00010				< 0.00010
	mg/L		-	-	0.00014	<0.00010	<0.00010	<0.00010	< 0.00010	< 0.00010	< 0.00010	<0.00010
Total Tungsten (W)			- 0.0085	0.02	0.00014	<0.00010	0.000287	0.00028	0.000325	<0.00010	<0.00010 0.000508	0.00043
Total Tungsten (W) Total Titanium (Ti)	mg/L			0.02								
Total Tungsten (W) Total Titanium (Ti) Total Uranium (U)		75	0.0085		0.000631	0.000349	0.000287	0.00028	0.000325	0.000487	0.000508	0.00043

Notes:

A shaded value means exceeded the freshwater aquatic life criteria

A shaded value means exceeded the resilvater aduatic the criteria. A shaded value means exceeded both the aquatic life and drinking water criteria. A shaded value means exceeded both the aquatic life and drinking water criteria. A shaded value means reading had detection limit exceeding criteria.

(AO - Aesthetic Objective)

(AO - Aesthetic Objective)
1. BC Environment Approved and Working Criteria for Water Quality, last updated March 2018
2. All criteria limits for BCWQG - based on Total Metal Concentration except Aluminum and Cadmium (Dissolved)
3. BC Environment Drinking Water Guidelines and Canadian Drinking Water Standards
4. BC Contaminated Sites Regulation for Drinking Water (BC-CSR-DW) Schedule 3.2, last updated January 2019
c. Limit dependent on chloride concentration. (MAC - Maximum Acceptable Concentration)

c. Limit dependent on chloride concentration. (MAC - Maximum Acceptable d. Limit pH and temperature dependent.
e. Limit dependant on hardness. Range given for hardness 50 to 1,000 mg/L.
f. Limit for chromium (IV)
g. Limit for total, no dissolved concentrations
h.copper (mg/L) =(0.094* Hardness)/1000
i. Limit for hardness based on total dissolved CaCO3

Table 4.1 Wetland #4 Water Volatile Organic Compounds

		BC MOE	Wetland 4
Parameters	Units	OC Criteria	
Date			22-Jul-19
Total Metals			
Benzene	mg/L		< 0.00050
Bromodichloromethane	mg/L		< 0.0010
Bromoform	mg/L		< 0.0010
Carbon Tetrachloride	mg/L		< 0.00050
Chlorobenzene	mg/L		< 0.0010
Dibromochloromethane	mg/L		< 0.0010
Chloroethane	mg/L		< 0.0010
Chloroform	mg/L		< 0.0010
Chloromethane	mg/L		< 0.0050
1,2-Dichlorobenzene	mg/L		< 0.00050
1,3-Dichlorobenzene	mg/L		< 0.0010
1,4-Dichlorobenzene	mg/L		< 0.0010
1,1-Dichloroethane	mg/L		< 0.0010
1,2-Dichloroethane	mg/L		< 0.0010
1,1-Dichloroethylene	mg/L		< 0.0010
cis-1,2-Dichloroethylene	mg/L		< 0.0010
trans-1,2-Dichloroethylene	mg/L		< 0.0010
Dichloromethane	mg/L		< 0.0050
1,2-Dichloropropane	mg/L		< 0.0010
cis-1,3-Dichloropropylene	mg/L		< 0.00050
trans-1,3-Dichloropropylene	mg/L		< 0.00050
1,3-Dichloropropene (cis & trans)	mg/L		< 0.0010
Ethylbenzene	mg/L		< 0.00050
Methyl t-butyl ether (MTBE)	mg/L		< 0.00050
Styrene	mg/L		< 0.00050
1,1,1,2-Tetrachloroethane	mg/L		< 0.0010
1,1,2,2-Tetrachloroethane	mg/L		< 0.00020
Tetrachloroethylene	mg/L		< 0.0010
Toluene	mg/L		< 0.00045
1,1,1-Trichloroethane	mg/L		< 0.0010
1,1,2-Trichloroethane	mg/L		< 0.00050
Trichloroethylene	mg/L		< 0.0010
Trichlorofluoromethane	mg/L		< 0.0010
Vinyl Chloride	mg/L		< 0.00040
ortho-Xylene	mg/L		< 0.00050
meta- & para-Xylene	mg/L		< 0.00050
Xylenes	mg/L		< 0.00075
4-Bromofluorobenzene (SS)	%		100.400
1,4-Difluorobenzene (SS)	%		100

Notes:

A shaded value means exceeded the freshwater aquatic life criteria
A shaded value means reading exceeded the drinking water quality criteria.
A shaded value means exceeded both the aquatic life and drinking water criteria.
A shaded value means exceeded the OC discharge criteria.
A shaded value means reading had detection limit exceeding criteria.

(AO - Aesthetic Objective)

1. BC Environment Approved and Working Criteria for Water Quality, last updated March 2018

2. All criteria limits for BCWQG - based on Total Metal Concentration except Aluminum and Cadmium (Dissolved)

3. BC Environment Drinking Water Guidelines and Canadian Drinking Water Standards

4. BC Contaminated Sites Regulation for Drinking Water (BC-CSR-DW) Schedule 3.2, last updated January 2019

c. Limit dependent on chloride concentration. (MAC - Maximum Acceptable Concentration)

d. Limit pH and temperature dependent.

e. Limit dependant on hardness. Range given for hardness 50 to 1,000 mg/L.

f. Limit for chromium (IV)

g. Limit for total, no dissolved concentrations

h.copper (mg/L) = (0.094* Hardness)/1000

i. Limit for hardness based on total dissolved CaCO3

Hazelton WMF Annual Monitoring Report Regional District of Kitimat-Stikine PRJ20010

		BC MoE Guidelines			SW-05		SW-	08 (Hwy 16 East Cu	lvert)
		Freshwater Aquatic Life (1) (2)	Drinking Water (2) (3)						
Parameters	Units				Duplicate			Duplicate	
Date				21-Nov-19	21-Nov-19	RPD (%)	21-Nov-19	21-Nov-19	RPD (9
Total Hardness	mg/L	-	-	50.3	51.2	2%	36	36	1%
Dissolved Hardness (CaCO3)	mg/L	-	-						
Alkalinity (Total as CaCO3)	mg/L	-	-	7	19	89%	7	19	89%
Total Organic Carbon (C)	mg/L	+/- 20% of background	4.0	46.3	40.3	14%	46.3	40.3	14%
Alkalinity (PP as CaCO3)	mg/L	-	-						
Bicarbonate (HCO3)	mg/L	-	-						4
Carbonate (CO3) Hydroxide (OH)	mg/L mg/L	-	-						
Chemical Oxygen Demand (COD)	mg/L	-	-	59	103	54%	114	107	6%
Biological Oxygen Demand (BOD)	mg/L mg/L	_	-	2.1	<2.0	5470	114	107	070
Sulphate (SO4)	mg/L	128-429 (e)	500, AO	<0.30	<0.30		< 0.30	0.57	
Chloride (Cl)	mg/L	600	250, AO	48.7	48.7	0%	29	25.3	13%
Fluoride (F)	mg/L	0.4-1.87 (e)	1.5	0.038	0.036	5%	<0.020	0	1376
Total Kjeldahl Nitrogen	mg/L	-	-	2.19	2.000	9%	2.19	2.000	9%
Ammonia (N)	mg/L	0.681-28.7 (d)	-	0.0123	0.0115	7%	0.039	0.041	5%
Nitrate plus Nitrite (N)	mg/L	-	-						
Nitrite (N)	mg/L	0.06 -0.6 (c)	1.0	<0.0010	<0.0010		< 0.0010	< 0.0010	
Nitrate (N)	mg/L	32.8	10 MAC	0.0059	0.0073	21%	0.0071	< 0.0050	
Conductivity	uS/cm	-	-	130	130	0%	130	130	0%
Field Conductivity	uS/cm	-	-						
pH	pH Units	6.5 - 9.0	7.0-10.5	7.18	7.09	1%	6.32	7.09	11%
Field pH	pH Units	6.5 - 9.0	7.0-10.5						
TSS	mg/L	25 mg/L (background 25-250 mg/l)) (i)	<500, AO						
Total Metals	<i>a</i>	0.002.0.1 (11)	0.5	0.407	0.400	500/	0.26	0.505	4000
Total Aluminum Total Antimony (Ab)	mg/L mg/L	0.023-0.1 (j,k) 0.009	9.5 0.006	0.197 <0.00010	0.108	58%	0.36 <0.00010	0.595 0.00011	49%
Total Antimony (Ab) Total Arsenic (As)	mg/L mg/L	0.009	0.006 0.01 MAC	<0.00010	<0.00010	1%	<0.00010	0.00011	42%
Total Barium (Ba)	mg/L	1	1.0	0.0235	0.0227	3%	0.00049	0.0073	42%
Total Beryllium (Be)	mg/L	0.00013	-	<0.00010	<0.00010	570	<0.0012	<0.00174	3070
Total Bismuth (Bi)	mg/L mg/L	-	-	<0.000050	<0.000050		<0.00010	<0.00010	
Total Boron (B)	mg/L mg/L	1.2	5.0, MAC	<0.010	<0.010		<0.010	<0.010	
Total Cadmium (Cd)	mg/L	0.000027 - 0.00280 (e)	0.005, MAC	0.0000072	0.0000060	18%	0.0000187	0.0000237	24%
Total Calcium (Ca)	mg/L	<4 sensitive to acid input	-	15.1	15.4	2%	10.4	11.1	7%
Total Cesium (Cs)	mg/L	-	-	0.000016	<0.000010	-/-	0.000018	0.000035	64%
Total Chromium (Cr)	mg/L	0.001 (f)	0.05, MAC	0.00030	0.00023	26%	0.00045	0.00074	49%
Total Cobalt (Co)	mg/L	0.11	-	0.00043	0.00039	10%	0.00018	0.00026	36%
Total Copper (Cu)	mg/L	0.0032-0.0396 (e)	1.0, AO	0.00084	0.00065	26%	0.00136	0.00266	65%
Total Iron (Fe)	mg/L	1	0.3, AO	1.00	0.918	9%	0.63	0.93	40%
Total Lead (Pb)	mg/L	0.011-0.402 (e)	0.01	0.000231	0.000154	40%	0.000421	0.000273	43%
Total Lithium (Li)	mg/L	-	-	<0.0010	<0.0010		< 0.0010	< 0.0010	
Total Magnesium (Mg)	mg/L	-	-	3.02	3.08	2%	2.78	2.54	9%
Total Manganese (Mn)	mg/L	0.8-3.4 (e)	0.05, AO	0.105	0.102	3%	0.0314	0.0288	9%
Total Mercury (Hg)	mg/L.	0.0001	0.001	<0.000050	<0.000050		0.0000074	0.0000101	31%
Total Molybdenum (Mo)	mg/L	2	0.25	< 0.000050	<0.000050		< 0.000050	0.000088	
Total Nickel (Ni)	mg/L	0.025-0.15 (e)	-	0.00093	0.00089	4%	0.00077	0.00116	40%
Total Phosphorus (P)	mg/L	0.005-0.015 (for lakes only)	0.01, AO	0.052	<0.050	10/	<0.050	<0.050	5.40/
Total Potassium (K) Total Rubidium (Rb)	mg/L mg/I	-	-	0.408	0.411 0.00038	1% 23%	0.394 0.00045	0.689 0.00054	54% 18%
Total Rubidium (Rb) Total Selenium (Se)	mg/L	0.002	0.01, MAC	0.00048	0.00038	23%	<0.00045	0.00054	18%
Total Selenium (Se) Total Silicon (Si)	mg/L mg/L	0.002		1.00	0.000061	15%	<0.000050 3.28	4.12	23%
Total Silver (Ag)		0.0001-0.003 (e)	-	<0.000010	<0.000010	1,3 70	<0.000010	0.000015	2370
Total Sodium (Na)	mg/L mg/L	-	<200, AO	20.9	21.8	4%	13.4	13.7	2%
Total Strontium (Sr)	mg/L	-	<200, AO	0.103	0.106	3%	0.0673	0.0698	4%
Total Sulphur (S)	mg/L	-	-	<0.50	<0.50	270	<0.50	0.65	+ 70
Total Tellurium (Te)	mg/L mg/L	•	-	<0.00020	<0.00020		<0.00020	<0.00020	1
Total Thallium (TI)	mg/L mg/L	0.0008	-	<0.00020	<0.000020		<0.00010	<0.000010	1
Total Thorium (Th)	mg/L	-	-	<0.00010	<0.00010		<0.00010	<0.00010	1
Total Tin (Sn)	mg/L	-	-	<0.00010	<0.00010		<0.00010	<0.00010	1
Total Tungsten (W)	mg/L			<0.0039	0.00209		0.00379	0.00675	56%
Total Titanium (Ti)	mg/L	-	-	<0.00010	< 0.00010		< 0.00010	< 0.00010	
Fotal Uranium (U)	mg/L	0.0085	0.02	<0.000010	<0.000010		< 0.000010	0.000023	1
Total Vanadium (V)	mg/L	-	-	0.00072	0.00051	34%	0.00104	0.00119	13%
Fotal Zinc (Zn)	mg/L	0.033-0.34 (e)	5.0, AO	<0.0030	<0.0030		0.005	0.0117	80%
Total Zirconium (Zr)	mg/L			<0.00020	<0.00020		< 0.00020	0.00036	1

2018 data compared to 2018 criteria

A shad
A shad

A shaded value means exceeded the freshwater aquatic life criteria A shaded value means reading exceeded the drinking water quality criteria. A shaded value means exceeded both the aquatic life and drinking water criteria. A shaded value means reading had detection limit exceeding criteria.

 A shaded value means reading had detection limit exceeding criteria.

 (AO - Aesthetic Objective)

 1. BC Environment Approved and Working Criteria for Water Quality, last updated March 2018

 2. All criteria limits for BCWQG - based on Total Metal Concentration except Aluminum and Cadmium (Dissolved)

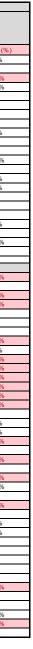
 3. BC Environment Drinking Water Guidelines and Canadian Drinking Water Standards

 c. Limit dependent on chloride concentration. (MAC - Maximum Acceptable Concentration)

 d. Limit pH and temperature dependent.

 e. Limit dependant on hardness.

 f. Limit for chromium (IV)


 g. Limit for total, no dissolved concentrations

 h.copper (mg/L) = (0.094* Hardness)/1000

 i. Limit beradense based on total discolved CaCO³

Limit for hardness based on total dissolved CaCO³
 at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
 k. Limit for dissolved metals, not total metals

Hazelton WMF Annual Monitoring Report Regional District of Kitimat-Stikine PRJ20010

	ality Data QA/(BC MoE Guideli	nes	BC CSR Standards		BH 01			BH 5B	
Analyte	Units	Freshwater Aquatic Life (1) (2)	Drinking Water (2) (3)	BC CSR-DW (4)		Duplicate			Duplicate	
					13-Aug-19	13-Aug-19	RPD(%)	20-Nov-19	20-Nov-19	RPD (%)
Strong Acid Dissoc. Cyanide (CN)	mg/L	-								
Cyanide, total	mg/L	-	-	0.2						
Alkalinity (CaCO3)	mg/L	-	-	-	326	309	5%	592	676	13%
Dissolved Hardness (CaCO3)	mg/L	-	-	-	265	318	18%	719	722	0%
Hardness, Total (Total as CaCO3) Chloride (Cl)	mg/L	600	250, AO	250	<0.50	<0.50	18%	215.0	215.0	0%
Fluoride (F)	mg/L mg/L	0.4-1.87 (e)	230, AO 1.5	1.5	0.074	0.075		<0.10	<0.10	0%
Sulphate (SO4)	mg/L mg/L	128-429 (e)	<500, AO	500	14.4	14.7	2%	2	2	
Conductivity	uS/cm	-		-		1/	270	1570	1740	
Field Conductivity	uS/cm	-		-						
Ammonia (N)	mg/L	0.68-28.7 (d)	-	-	0.276	0.271	2%	0.078	0.067	15%
Nitrate (N)	mg/L	32.8	10 MAC	10.0	< 0.0050	< 0.0050		< 0.025	< 0.025	
Nitrite (N)	mg/L	0.06-0.6 (c)	1.0	1	< 0.0010	< 0.0010		< 0.0050	< 0.0050	
Nitrate+Nitrite (N)	mg/L	-	-	10						
Total Kjeldahl Nitrogen (N)	mg/L	-	-	-				1.610	1.050	
Total Phosphorous (P)	mg/L		0.01	-						L
Total Suspended Solids	mg/L	25 mg/L (background 25-250 mg/l)) (i)	-							
Total Dissolved Solids pH	mg/L	6.5 - 9.0	7.0-10.5	-	8.38	8.37		8.01	7.64	
Field pH	pH units pH units	6.5 - 9.0	7.0-10.5		7.32	6.37		6.67	7.04	
Volatiles	pri ullits	0.5 - 7.0	7.0-10.5	-	1.52			0.07		
Vinyl chloride	ug/L			2						
Dichloromethane	ug/L	98.1		50	1					
Benzene	ug/L	40 (a)	5 (a)	5						
Toluene	ug/L	0.5 (a)	-	60						
1,4-dichlorobenzene	ug/L	26	-	5						
Misc. Organics										<u> </u>
Chemical Oxygen Demand	mg/L	-	-	-	148.00	134.00	10%	31	33	6%
Biochemical Oxygen Demand	mg/L	-	-	-						L
Dissolved Organic Carbon (C)	mg/L	-	-		64.40	1.22		9.35	9.59	
Total Organic Carbon (C) Phenols	mg/L mg/L	50		1.0	64.40	1.22		9.35	9.59	<u> </u>
Dissolved Metals	mg/L	50	-	1.0						
Dissolved Aluminum (Al)	mg/L	0.023-0.1 (b,c)	9.5	9.5	0.0022	5.6000	200%	0.0072	0.0044	48%
Dissolved Antimony (Sb)	mg/L	0.009	0.006	0.006	< 0.00010	0.00011		0.00011	0.00012	9%
Dissolved Arsenic (As)	mg/L	0.005	0.01 MAC	0.01	0.00835	0.00977	16%	0.00773	0.00804	4%
Dissolved Barium (Ba)	mg/L	1	1.0	1	0.1940	0.2890	39%	0.281	0.2470	13%
Dissolved Beryllium (Be)	mg/L	0.00013	-	0.008	< 0.00010	0.00017		< 0.00010	< 0.00010	
Dissolved Bismuth (Bi)	mg/L	-	-	-	< 0.000050	< 0.000050		< 0.000050	< 0.000050	
Dissolved Boron (B)	mg/L	1.20	5.0, MAC	5.00	0.089	0.1	12%	0.015	0.0140	7%
Dissolved Cadmium (Cd)	mg/L	0.000027 - 0.00280 (e)	0.005	0.005	< 0.0000050	0.000243		0.0000611	0.0000428	-
Dissolved Calcium (Ca)	mg/L	<4 sensitive to acid input	-	-	40.7	57.7	35%	188	191	2%
Dissolved Cesium (Cs) Dissolved Chromium (Cr)	mg/L mg/L	0.001 (e, f)	- 0.05, MAC	- 0.05 (VI), 6 (III)	<0.000010 <0.00010	0.000355		<0.00010 <0.00010	<0.000010 <0.00010	<u> </u>
Dissolved Chromium (Cr) Dissolved Cobalt (Co)	mg/L mg/L	0.001 (e, 1)	0.05, MAC	0.03 (VI), 8 (III)	0.00010	0.00539	192%	< 0.00010	< 0.00010	6%
Dissolved Copper (Cu)	mg/L mg/L	0.0032-0.0396 (e)	1.0, AO	1.5	< 0.00011	0.00339	19270	0.00405	0.00430	75%
Dissolved Iron (Fe)	mg/L mg/L	0.35	0.3, AO	6.5	0.099	9.450	196%	12.2	12	2%
Dissolved Lead (Pb)	mg/L	0.011-0.402 (e)	0.01	0.01	< 0.000050	0.00373		0.00005	< 0.000050	- /-
Dissolved Lithium (Li)	mg/L	-	-	0.008	0.0012	0.0056	129%	0.002	0.0026	8%
Dissolved Magnesium (Mg)	mg/L	-	-	-	39.6	42.2	6%	60.6	59.6	2%
Dissolved Manganese (Mn)	mg/L	0.8-3.4 (e)	0.05, AO	1.5	0.135	0.728	137%	3.62	3.92	8%
Dissolved Mercury (Hg)	mg/L	0.0001, MAC	0.001	0.001	< 0.0000050	< 0.0000050		< 0.0000050	< 0.0000050	
Dissolved Molybdenum (Mo)	mg/L	2	0.25	0.25	0.00351	0.00176	66%	0.00025	0.000298	18%
Dissolved Nickel (Ni)	mg/L	0.025-0.15 (e)	-	0.08	< 0.00050	0.0117		0.00332	0.00413	22%
Dissolved Phosphorus (P)	mg/L	0.005-0.015 (for lakes only)	0.01, AO	-	<0.050	0.759	11%	0.145 3.59	0.121	18% 4%
Dissolved Potassium (K) Dissolved Rubidium (Rb)	mg/L mg/L	373-432	-	-	2.1 0.0004	2.34 0.00179	11%	3.59	3.75 0.00065	4% 8%
Dissolved Rubidium (Rb) Dissolved Selenium (Se)	mg/L mg/L	0.002	- 0.01, MAC	- 0.01	< 0.0004	< 0.00179	127%	0.0006	0.00065	39%
Dissolved Selenium (Se) Dissolved Silicon (Si)	mg/L mg/L	-	0.01, MAC	-	3.77	12	104%	8.51	8.59	1%
Dissolved Silver (Ag)	mg/L mg/L	0.001-0.003 (e)	-	0.02	<0.000010	0.000021	10470	<0.000010	<0.000010	1 /0
Dissolved Solium (Na)	mg/L mg/L	-	<200, AO	200	30.7	30.1	2%	84.900	87.2000	3%
Dissolved Strontium (Sr)	mg/L mg/L	-	-	2.50	1.150	1.300	12%	1.55	1.56	1%
Dissolved Sulphur (S)	mg/L	-		-	4.8	5.0	4%	1.09	1.23	12%
Dissolved Tellurium (Te)	mg/L	-	-	-	< 0.00020	< 0.00020		< 0.00020	< 0.00020	
Dissolved Thallium (Tl)	mg/L	0.0017	-		< 0.000010	0.000025		< 0.000010	< 0.000010	
Dissolved Thorium (Th)	mg/L	-	-		< 0.00010	0.00057		< 0.00010	< 0.00010	
Dissolved Tin (Sn)	mg/L	-	-	2.5	< 0.00010	0.00016		0.000	0.0001	
Dissolved Titanium (Ti)	mg/L	2	-	-	< 0.00030	0.0642		< 0.00030	< 0.00030	
Dissolved Tungsten (W)	mg/L	-	-	0.003	< 0.00010	<0.00010	1000	< 0.00010	< 0.00010	
Dissolved Uranium (U)	mg/L	0.3	0.02	0.02	0.00066	0.00079	18%	0.00137	0.00141	3%
Dissolved Vanadium (V)	mg/L	0.006	-	0.02	<0.00050	0.0125		< 0.00050	< 0.00050	800/
Dissolved Zinc (Zn) Dissolved Zirconium (Zr)	mg/L mg/L	0.19-0.72 (Hardness 300-1,000 mg/L) (e)	5 AO	3	<0.0010 <0.00020	0.0392		0.0065 0.00039	0.0028	80% 3%
		-	-	-	<0.00020	<0.0014	1	0.00039	0.00038	370

2018 data compared to updated criteria

A shaded value means exceeded the freshwater aquatic life criteria A shaded value means reading exceeded the drinking water quality criteria. A shaded value means reading exceeded the CSR drinking water quality criteria. A shaded value means creaded more than one criteria. A shaded value means reading had detection limit exceeding criteria.

A shaded value means reading exceeded the CSR drinking water quality criteria for sampling stations that trigger the Ground Water Quality Exceedances Response Plan

- (AO Aesthetic Objective)
 1. BC Environment Approved and Working Criteria for Water Quality, last updated March 2018
 2. All criteria limits for BCWQG based on Total Metal Concentration except Aluminum, Cadmium, and Iron (Dissolved)
 3. BC Environment Drinking Water Guidelines and Canadian Drinking Water (Standards
 4. BC Contaminated Sites Regulation for Drinking Water (BC-CSR-DW) Schedule 3.2, last updated January 2019
 c. Limit dependent on achieves. Range given for hardness 50 to 1,000 mg/L.
 f. Limit for chromium (IV)
 g. Limit for chromium (IV)
 g. Limit for chromium (IV)
 g. Limit for hardness. Based on total dissolved CaCO₃
 j. BC Contaminated Sites Regulation for Drinking Water (BC-CSR-DW) Schedule 3.2 Stage 11 Amendments, last updated March 2019

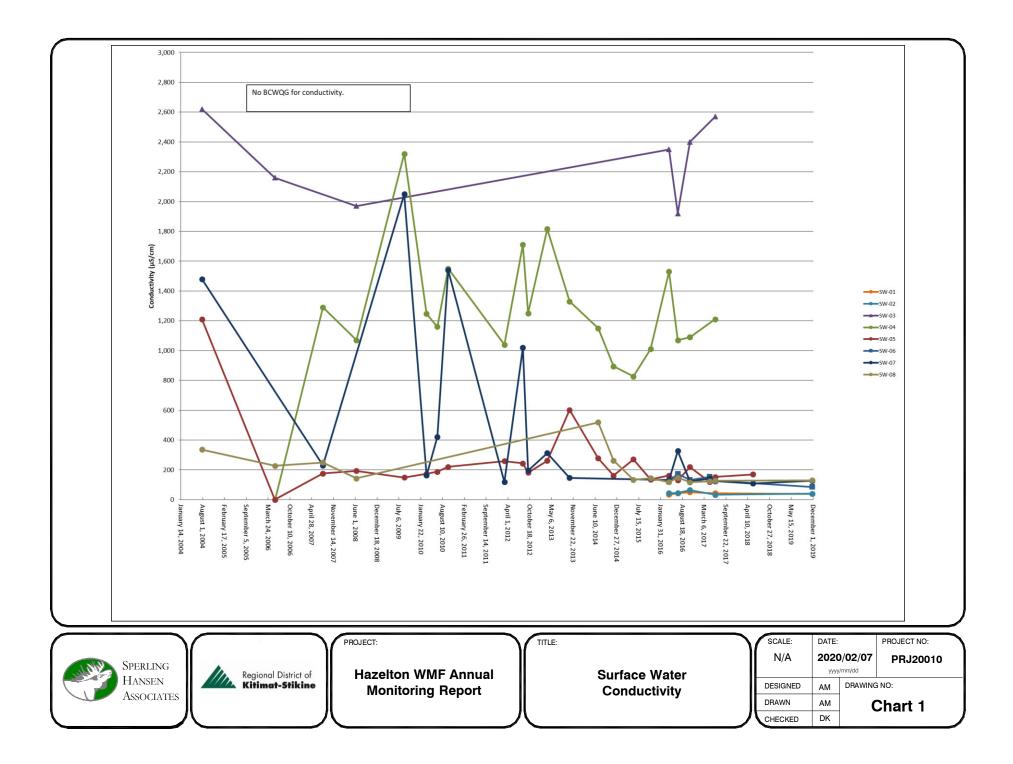
		BC MOE	BC MoE Guidelines (a)		Wetland 4	Wetland 4	
Parameters	Units	OC Criteria	Freshwater Aquatic Life	Drinking Water		DUP	RPD
Date					16-Sep-19	16-Sep-19	
Fotal Hardness	mg/L		-	-	293	290	1%
Dissolved Hardness (CaCO3)	mg/L		-	-			
Alkalinity (Total as CaCO3)	mg/L		-	-	284	283	0%
Fotal Organic Carbon (C)	mg/L		+/- 20% of background	4.0	15	17	8%
Alkalinity (PP as CaCO3)	mg/L		-	-			
Bicarbonate (HCO3)	mg/L		-	-			
Carbonate (CO3)	mg/L		-	-			
Hydroxide (OH)	mg/L		-	-			
Chemical Oxygen Demand	mg/L		-	-	51	56	9%
BOD	mg/L		-	-	<2.0	<2.0	
Dissolved Oxygen (DO)	mg/L						
Dissolved Sulphate (SO4)	mg/L		128-429 (e)	500, AO	24.5	24.7	1%
Dissolved Chloride (Cl)	mg/L	3750	600	250, AO	103	103	0%
Total Kjeldahl Nitrogen	mg/L mg/L	60	000	250, 110	105	105	070
Ammonia (N)	mg/L mg/L	30	0.681-28.7 (d)	-	2.81	2.71	4%
Vitrate plus Nitrite (N)		30	0.081-28.7 (d)	-	3.75	3.92	4%
Nitrite (N)	mg/L mg/I		0.06.05()	1.0	0.0404	0.0425	4% 5%
	mg/L	_	0.06 -0.6 (c)				
Nitrate (N)	mg/L		32.8	10 MAC	0.145	0.141	3%
Orthophosphorous	mg/L						
Conductivity	uS/cm		-	-			
pH	pH Units	6.5 - 8.5	6.5 - 9.0	7.0-10.5	8.16	8.15	0%
TSS	mg/L		25 mg/L (background 25-250 mg/l)) (i)	<500, AO			
Lethal Toxicity Testing							
LC-50	%v/v	100%			>100		
Fotal Metals							
Γotal Aluminum	mg/L		-	9.5	0.11	0.16	33%
Fotal Antimony (Ab)	mg/L		0.270	0.006	0.00023	0.00022	4%
Total Arsenic (As)	mg/L		0.005	0.01 MAC	0.00201	0.00204	1%
Total Barium (Ba)	mg/L		1	1.0	0.118	0.112	5%
Total Beryllium (Be)	mg/L		0.00013	-	< 0.00010	< 0.00010	
Total Bismuth (Bi)	mg/L		-	-	< 0.000050	< 0.000050	
Total Boron (B)	mg/L		1.2	5.0, MAC	0.556	0.547	2%
Fotal Cadmium (Cd)	mg/L	0.1	0.000027 - 0.00280 (e)	0.005, MAC	0.00001	0.00001	4%
Fotal Calcium (Ca)	mg/L	0.1	<4 sensitive to acid input	-	83	80.7	3%
Total Cesium (Cs)	mg/L mg/L		<4 sensitive to acid input	-	0.000024	0.000027	12%
Total Chromium (Cr)			0.001 (f)	0.05, MAC	0.00024	0.00027	22%
Total Cobalt (Co)	mg/L		0.001 (1)	0.03, MAC	0.0003	0.0004	15%
	mg/L			-	0.0007	0.00173	0%
Total Copper (Cu)	mg/L	4.5	0.0032-0.0396 (e)	1.0, AO			
Total Iron (Fe)	mg/L	4.5	1	0.3, AO	0.35	0.34	3%
Total Lead (Pb)	mg/L		0.011-0.402 (e)	0.01	0.000091	0.000091	0%
Total Lithium (Li)	mg/L		-	-	< 0.0010	< 0.0010	
Total Magnesium (Mg)	mg/L		-	-	20.9	21.4	2%
Total Manganese (Mn)	mg/L	_	0.8-3.4 (e)	0.05, AO	0.6	0.1	145%
Total Mercury (Hg)	mg/L.		0.0001	0.001	< 0.0000050	< 0.0000050	
Total Molybdenum (Mo)	mg/L		2	0.25	0.00121	0.00134	10%
Total Nickel (Ni)	mg/L		0.025-0.15 (e)	-	0.00438	0.00463	6%
Total Phosphorus (P)	mg/L		0.005-0.015 (for lakes only)	0.01, AO	< 0.050	< 0.050	
Fotal Potassium (K)	mg/L		-	-	8.9	9.39	5%
Fotal Rubidium (Rb)	mg/L				0.00182	0.00203	11%
Total Selenium (Se)	mg/L		0.002	0.01, MAC	0.000172	0.000134	25%
Total Silicon (Si)	mg/L	1	-	-	2.92	3.17	8%
Total Silver (Ag)	mg/L mg/L	1	0.0001-0.003 (e)	-	<0.000010	<0.000010	0,0
Fotal Sodium (Na)	mg/L mg/L		-	<200, AO	52.1	56.1	7%
Fotal Strontium (Sr)	mg/L mg/L			200, 110	0.652	0.638	2%
Fotal Sulphur (S)	mg/L mg/L		-	-	9.79	9.97	2%
Total Tellurium (Te)	mg/L		-		<0.00020	<0.00020	2 70
Total Tellurium (Te)		_	0.0008	-	<0.00020	<0.00020	
	mg/L			-			
Total Thorium (Th)	mg/L	_	-	-	< 0.00010	< 0.00010	
Total Tin (Sn)	mg/L		-	-	< 0.00010	< 0.00010	
Total Tungsten (W)	mg/L				< 0.0015	< 0.0024	
Fotal Titanium (Ti)	mg/L		-	-	< 0.00010	< 0.00010	
Fotal Uranium (U)	mg/L		0.0085	0.02	0.000487	0.000508	4%
Γotal Vanadium (V)	mg/L		-	-	< 0.00050	0.001	
Fotal Zinc (Zn)	mg/L	75	0.033-0.34 (e)	5.0, AO	< 0.0030	< 0.0030	
Total Zirconium (Zr)	mg/L		-	-	< 0.00020	< 0.00020	

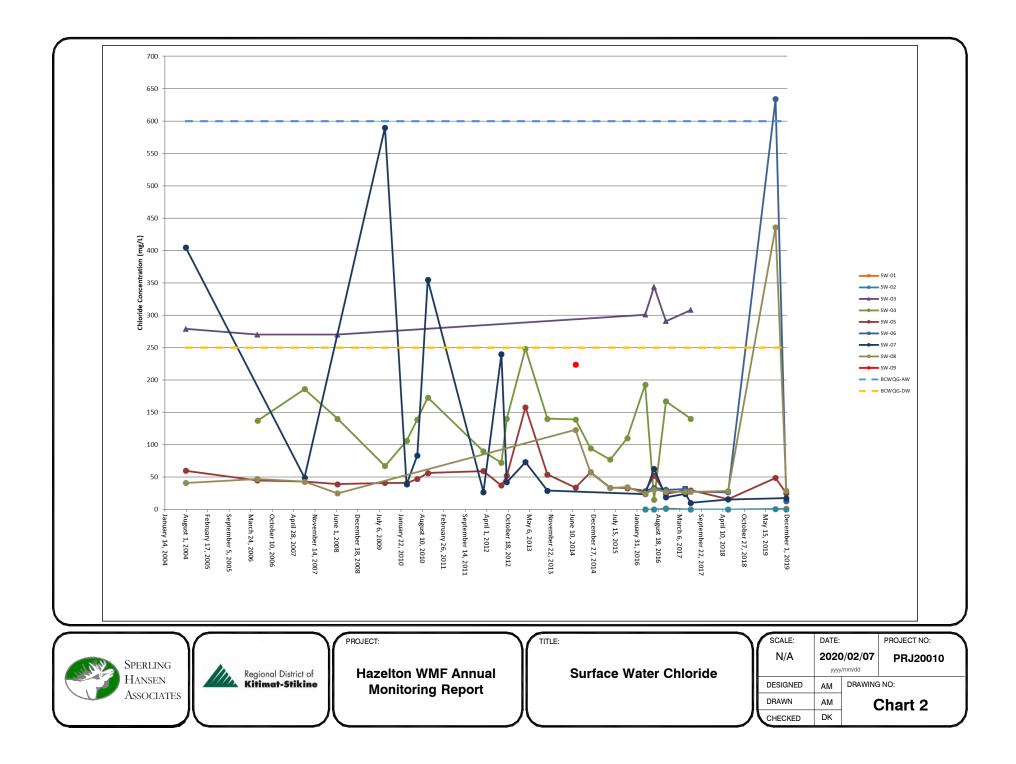
Table 7: Hazelton Wetland #4 Water Quality Data QA/QC

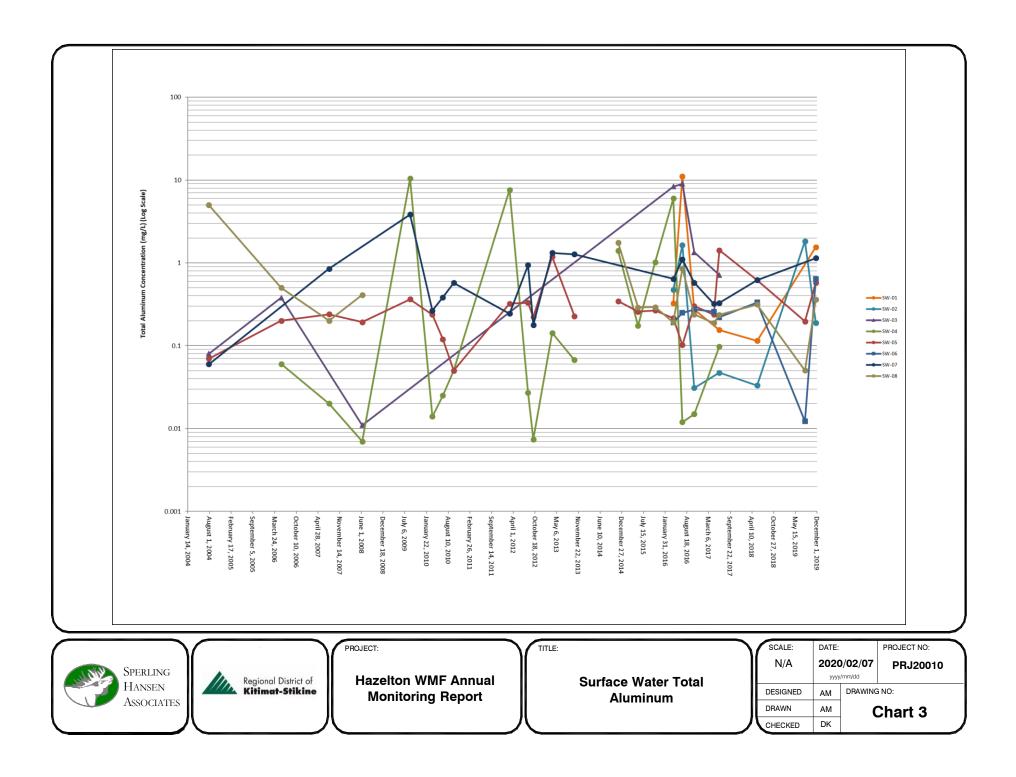
Notes:

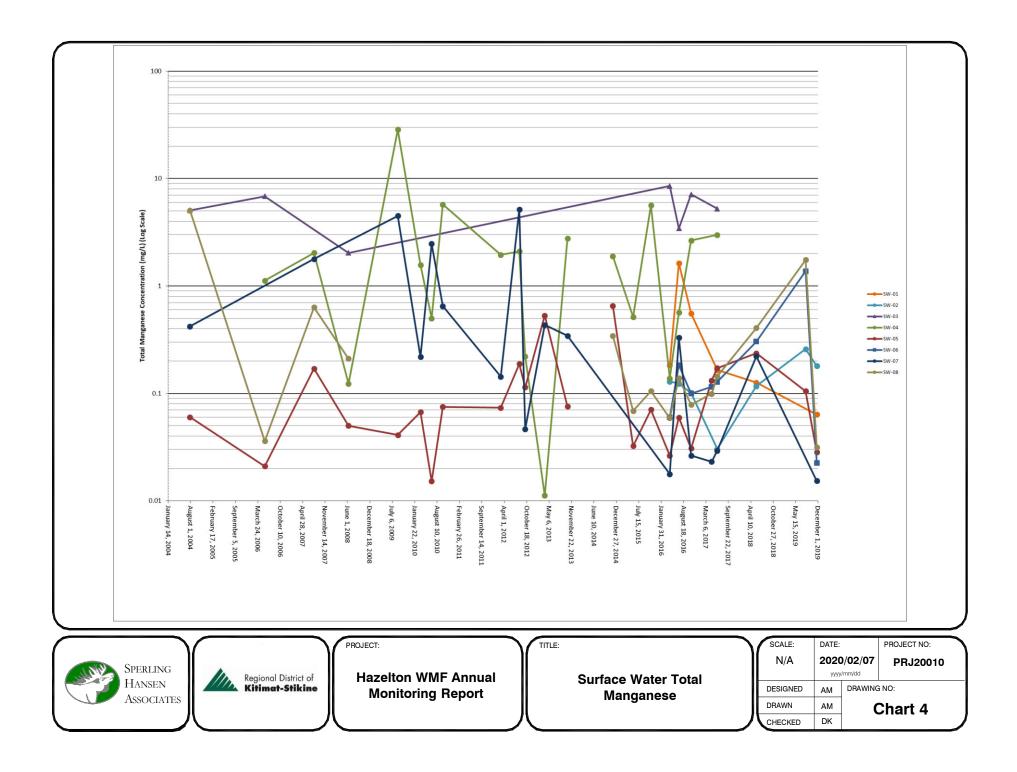
A shaded value means exceeded the freshwater aquatic life criteria A shaded value means reading exceeded the drinking water quality criteria. A shaded value means exceeded both the aquatic life and drinking water criteria. A shaded value means exceeded the OC discharge criteria. A shaded value means reading had detection limit exceeding criteria.

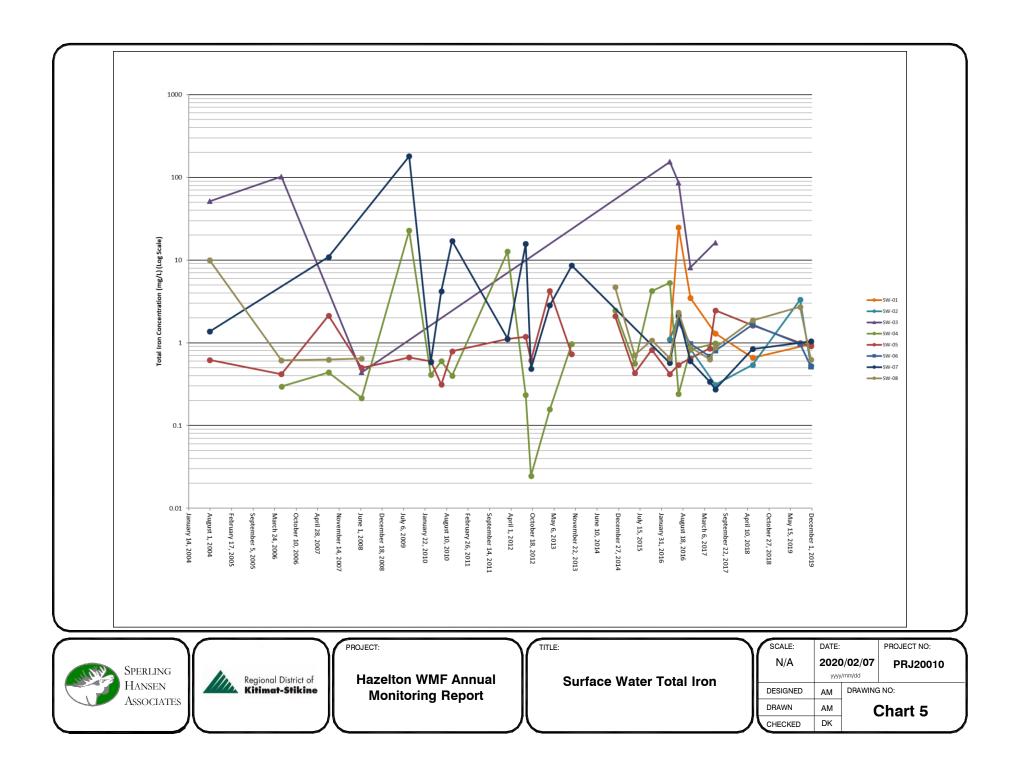
(AO - Aesthetic Objective)

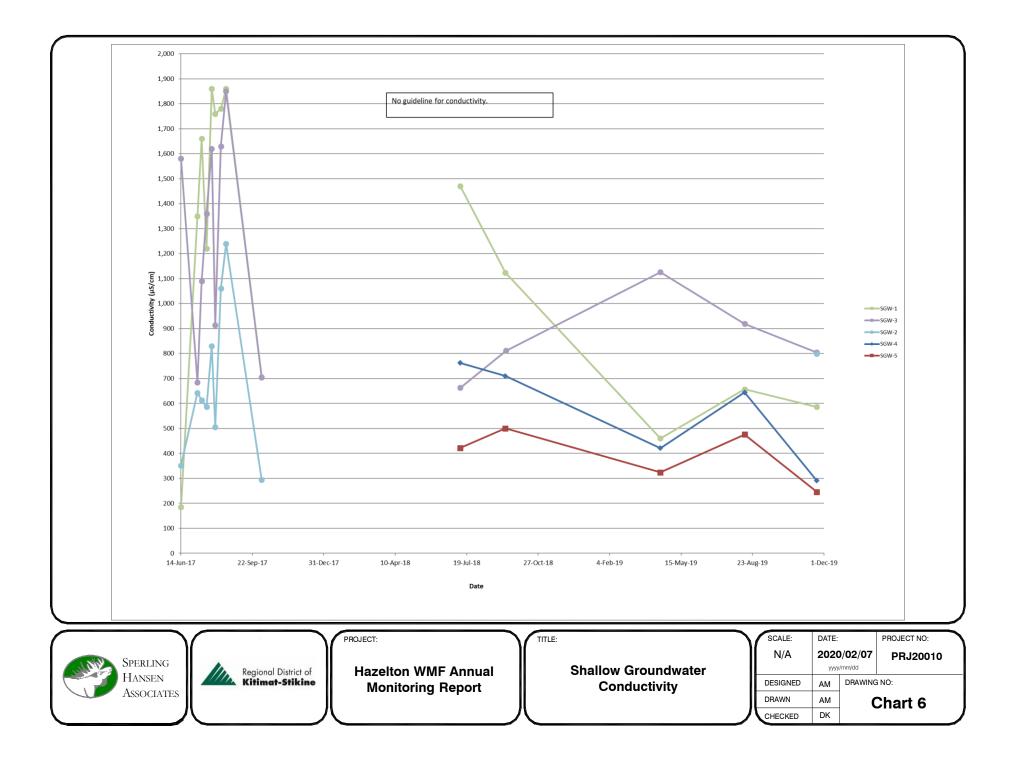

(A) - Aesthetic Objective)
1. BC Environment Approved and Working Criteria for Water Quality, last updated March 2018
2. All criteria limits for BCWQG - based on Total Metal Concentration except Aluminum and Cadmium (Dissolved)
3. BC Environment Drinking Water Guidelines and Canadian Drinking Water Standards
4. BC Contaminated Sites Regulation for Drinking Water (BC-CSR-DW) Schedule 3.2, last updated January 2019
c. Limit dependent on chloride concentration. (MAC - Maximum Acceptable Concentration)

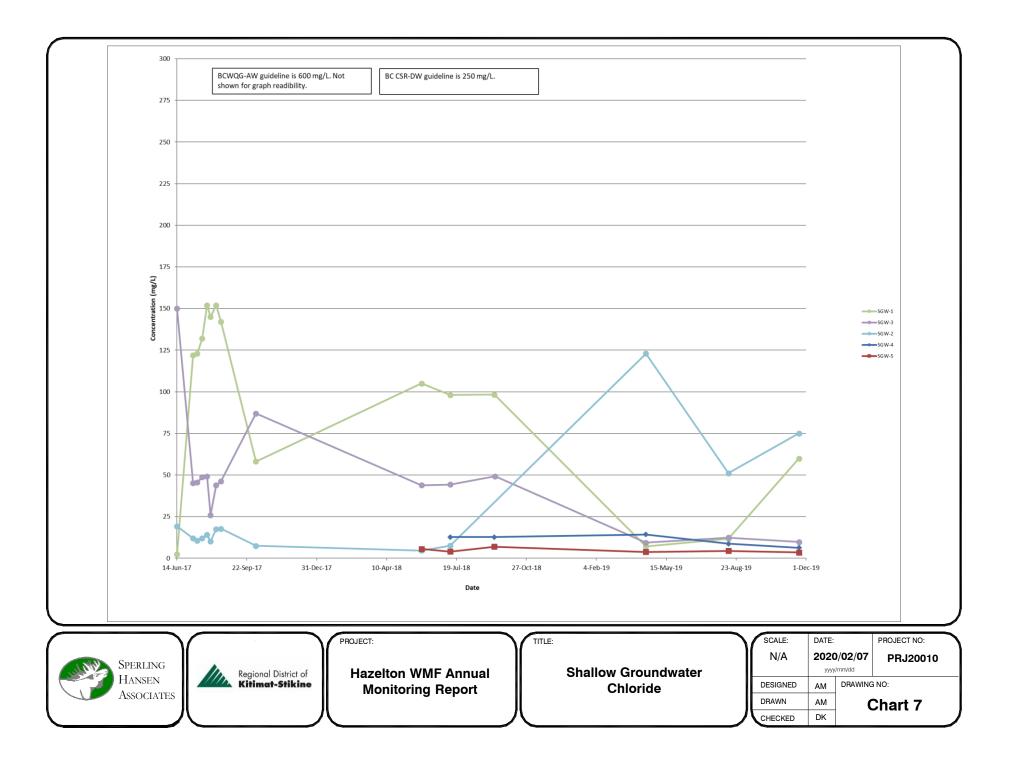

c. Limit dependent on chiorae concentration. (MAC - Maximum Acceptable d. Limit pH and temperature dependent.
 e. Limit dependant on hardness. Range given for hardness 50 to 1,000 mg/L.
 f. Limit for chromium (IV)
 g. Limit for total, no dissolved concentrations
 h.copper (mg/L) = (0.094* Hardness)/1000
 i. Limit for hordness hord on total dissolved CCCC2

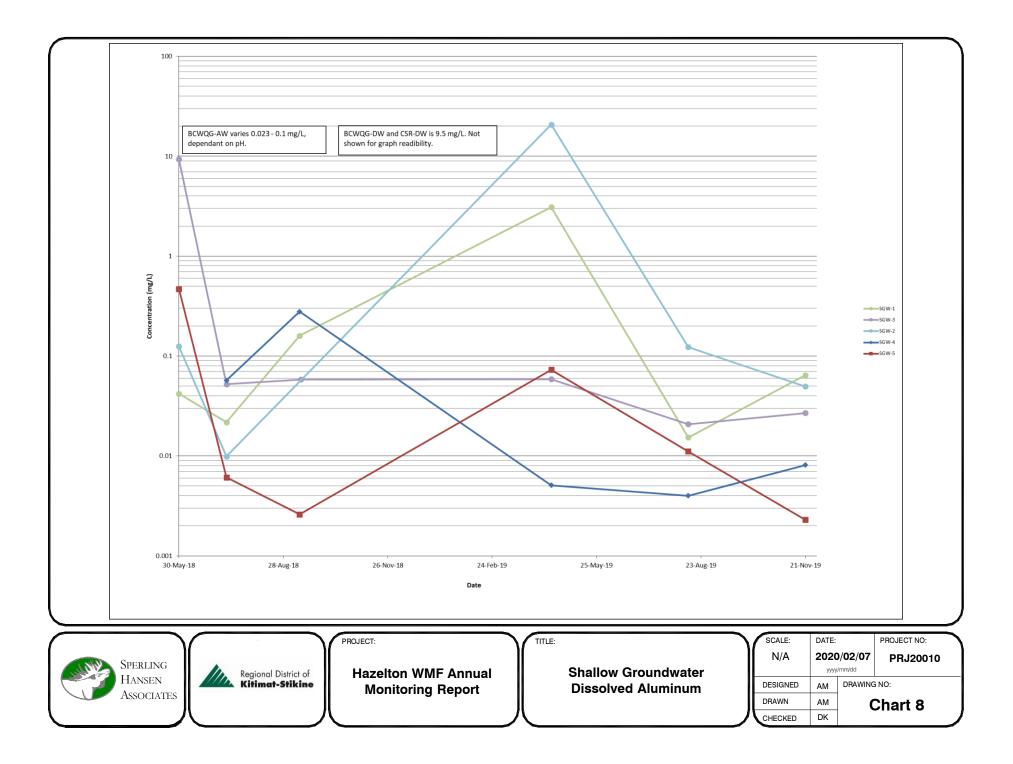

i. Limit for hardness based on total dissolved CaCO3

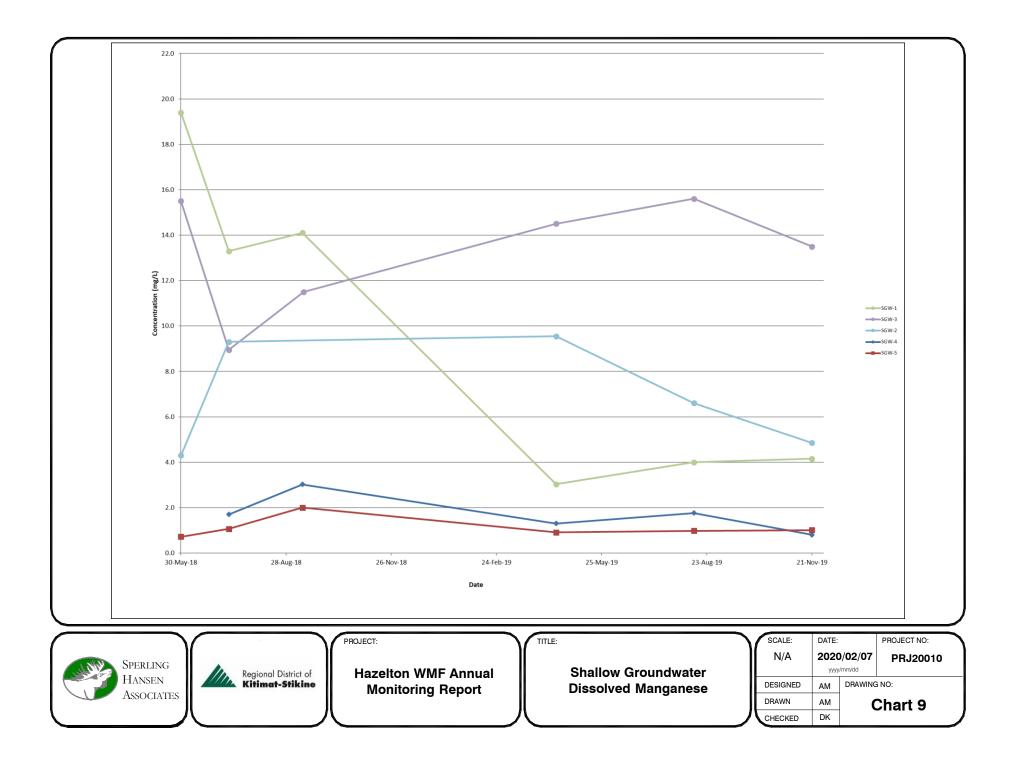

Appendix C: Charts

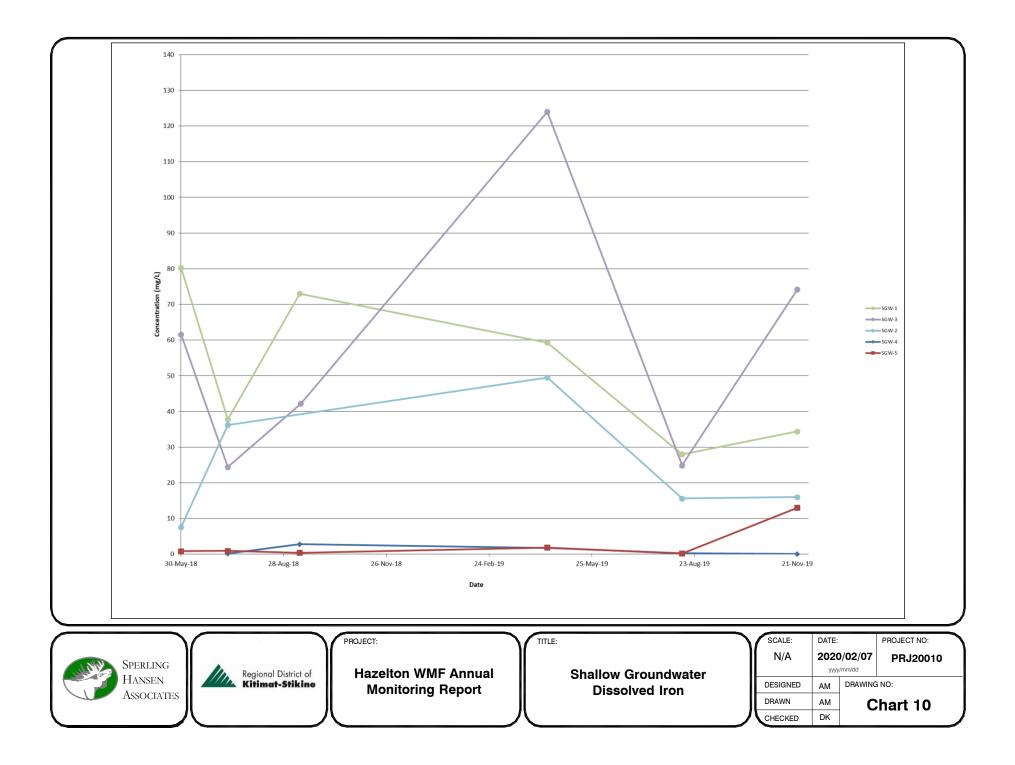


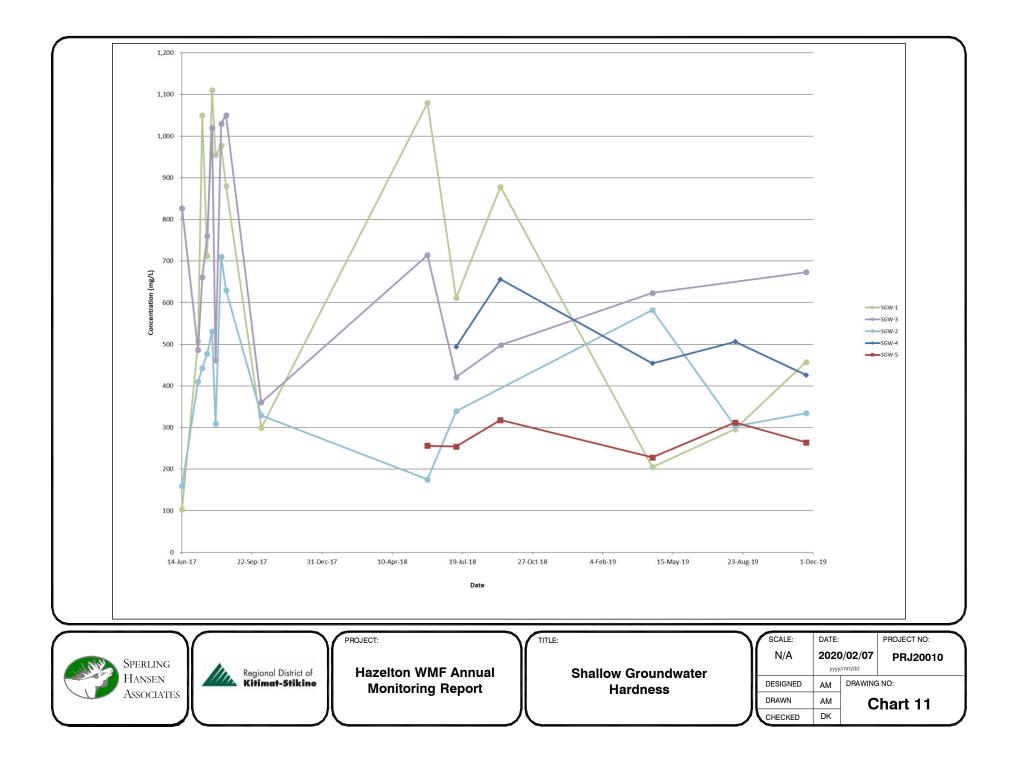


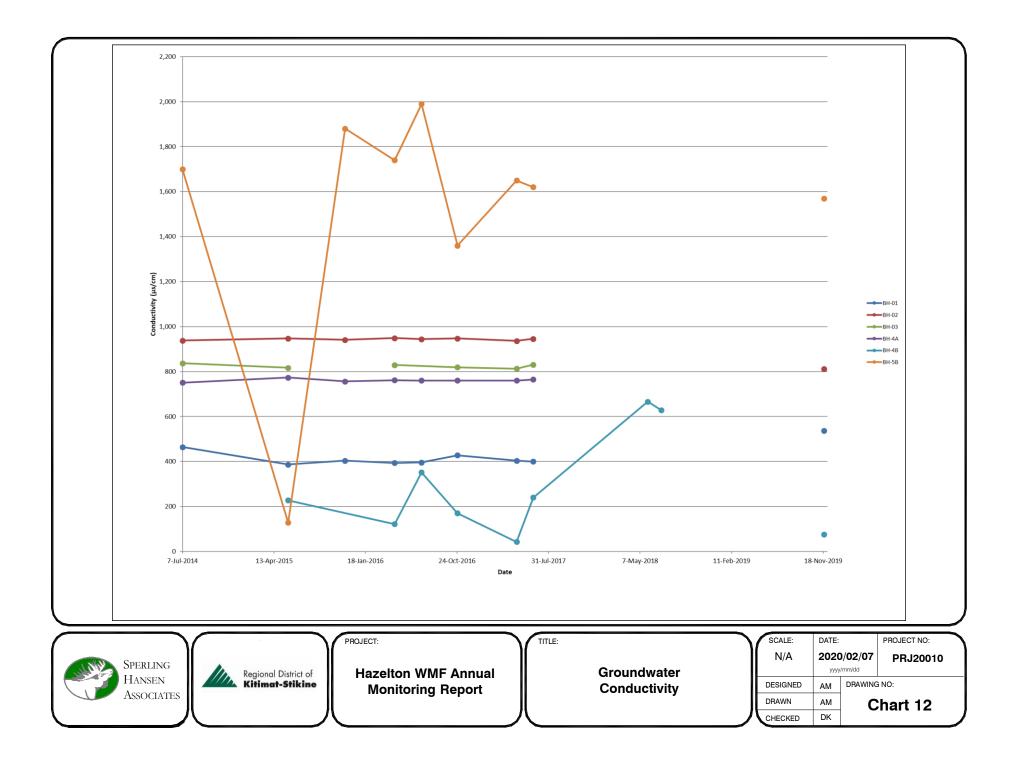


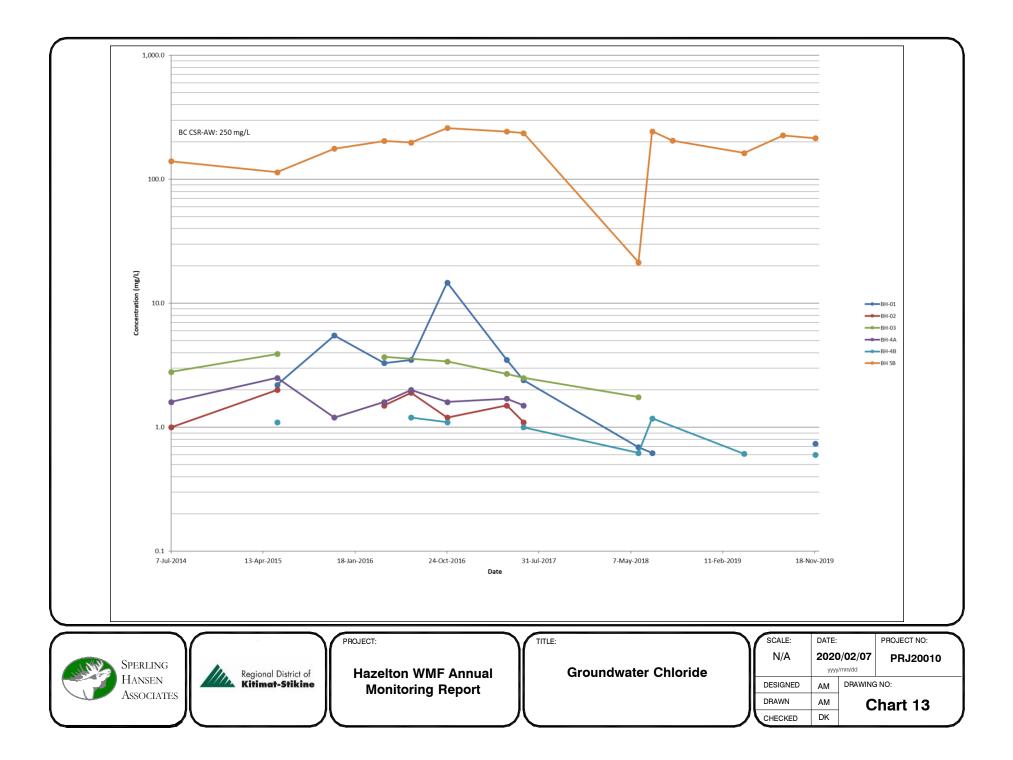


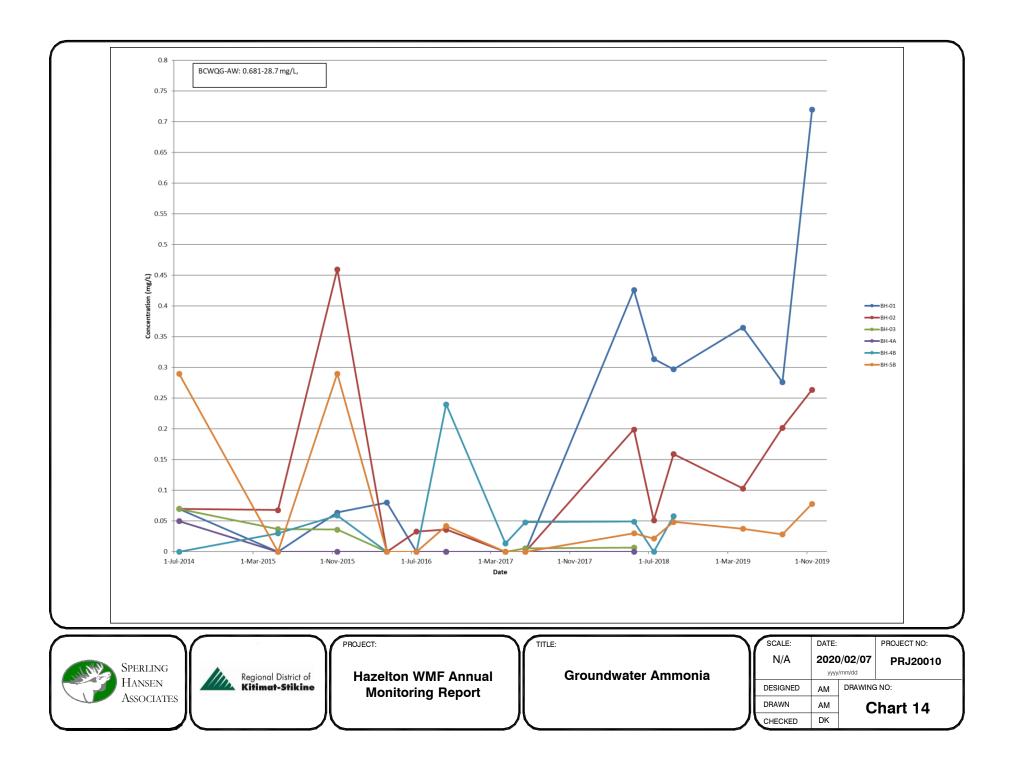


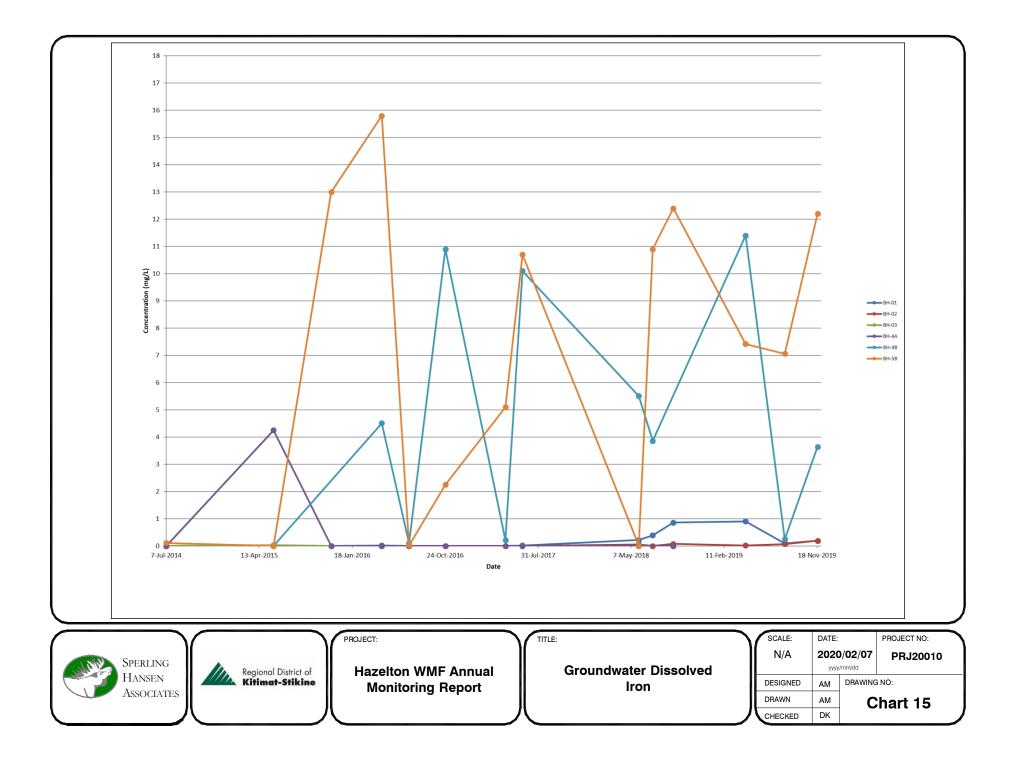


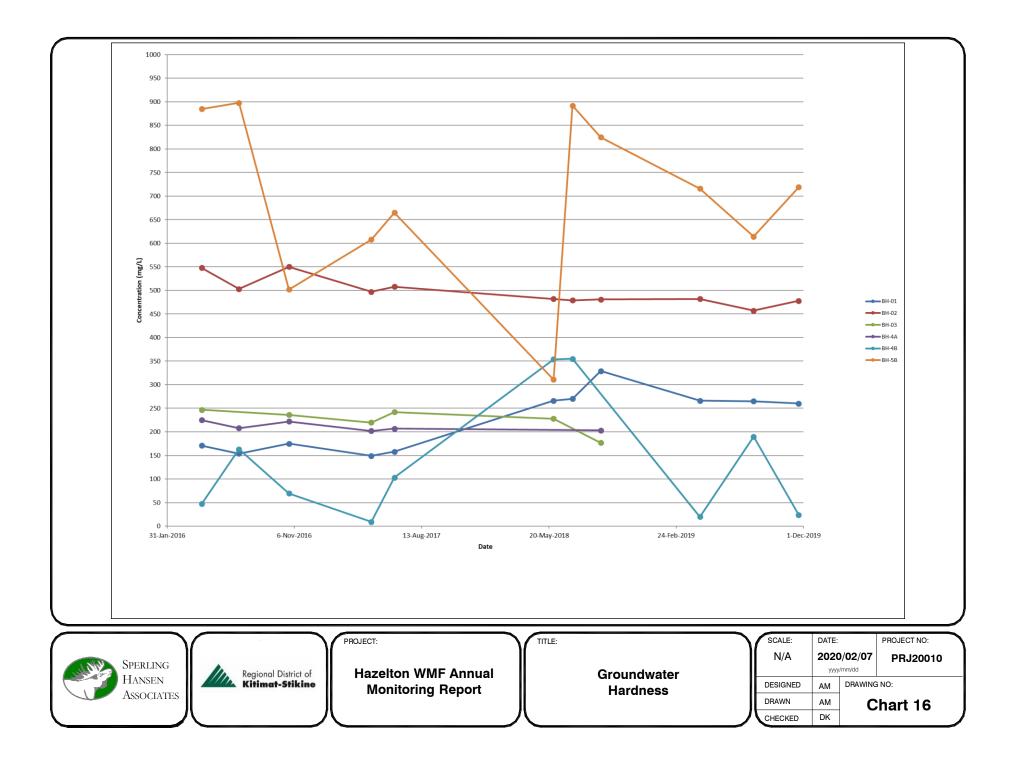


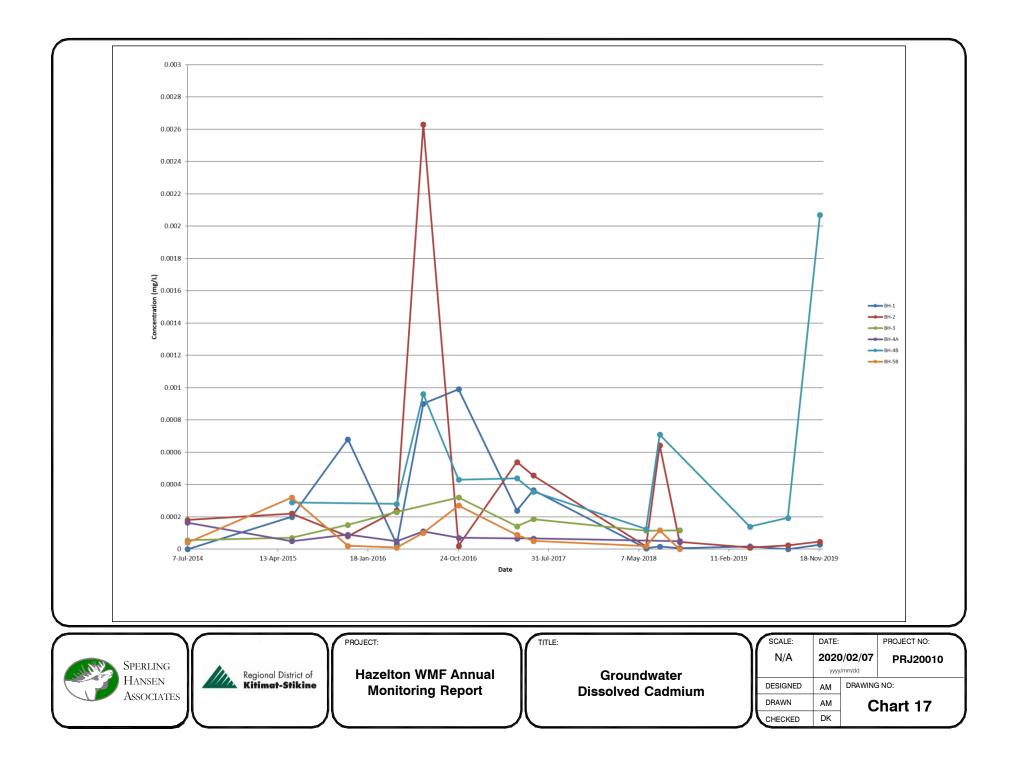


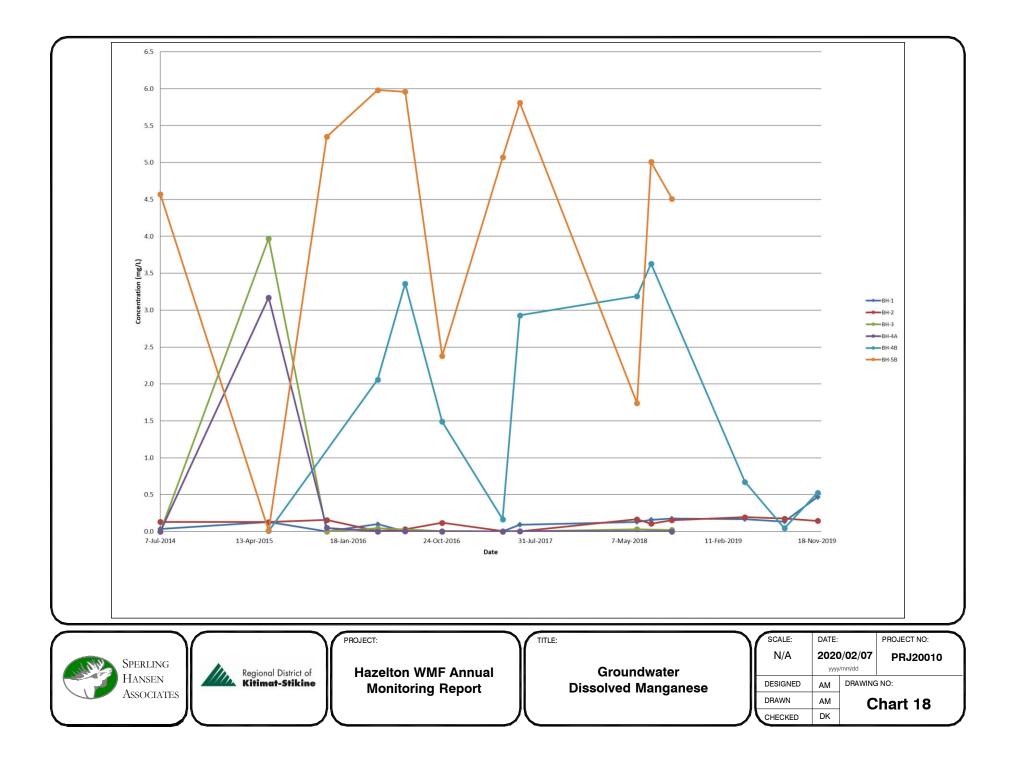












Appendix D: Operational Certificate MR-17226 for the Hazelton Regional Landfill

29

February 8, 2018

Tracking Number: 333329 Authorization Number: 17226

REGISTERED MAIL

REGIONAL DISTRICT OF KITIMAT-STIKINE 300 4545 LAZELLE AVENUE TERRACE, BC V8G 4E1

Dear Operational Certificate Holder:

Enclosed is Operational Certificate 17226 issued under the provisions of the *Environmental Management Act*. Your attention is respectfully directed to the terms and conditions outlined in the operational certificate.

This operational certificate does not authorize entry upon, crossing over, or use for any purpose of private or Crown lands or works, unless and except as authorized by the owner of such lands or works. The responsibility for obtaining such authority rests with the operational certificate holder. It is also the responsibility of the operational certificate holder to ensure that all activities conducted under this authorization are carried out with regard to the rights of third parties, and comply with other applicable legislation that may be in force.

This decision may be appealed to the Environmental Appeal Board in accordance with Part 8 of the *Environmental Management Act*. An appeal must be delivered within 30 days from the date that notice of this decision is given. For further information, please contact the Environmental Appeal Board at (250) 387-3464.

Administration of this operational certificate will be carried out by staff from the Environmental Protection Division's Regional Operations Branch. Plans, data, reports, non-compliance notifications and non-compliance reports pertinent to the permit are to be submitted to the Environmental Protection Division via email or other electronic means as directed in the following web link: <u>https://www2.gov.bc.ca/gov/content/environment/waste-management/waste-discharge-authorization/data-and-report-submissions</u>

Yours truly,

Barlos

Sajid A. Barlas, Ph.D., P.Ag. for Director, *Environmental Management Act* Authorizations - North Region

Environmental Protection Ministry of Environment Division 3726 Alfred Avenue Smithers, BC, V0J 2N0 Authorizations - North Region Telephone: (250) 847-7260 Facsimile: (250) 847-7591 Enclosure

cc: Environment Canada

MINISTRY OF ENVIRONMENT

OPERATIONAL CERTIFICATE

17226

for the HAZELTON REGIONAL LANDFILL

Under the Provisions of the Environmental Management Act and in accordance with the Regional District of Kitimat-Stikine's Solid Waste Management Plan, the

REGIONAL DISTRICT OF KITIMAT-STIKINE

Suite 300 – 4545 Lazelle Avenue

Terrace, British Columbia

V8G 4E1

is authorized to store, handle, treat and discharge municipal waste from Hazelton, Kitwanga and surrounding areas at the Hazelton Regional Landfill subject to the conditions listed below. Contravention of any of these conditions is a violation of the *Environmental Management Act* and may result in prosecution.

1. LOCATION OF LANDFILL PROPERTY

The location of the property where discharges are authorized to occur is the SW $\frac{1}{4}$ Part of District Lot 1574, Cassiar Land District.

2. DESIGN, OPERATIONS and CLOSURE PLAN

The landfill and associated works must be designed by qualified professionals [such as engineer(s) and/or geoscientist(s)] registered in the Province of British Columbia who have expertise in the field of landfill design. These details must be incorporated into a "Design, Operations, and Closure Plan" (DOCP) and must be reviewed, updated and submitted to the Director for approval by March 9, 2018.

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

The approved DOCP must subsequently be reviewed, updated and submitted to the Director for approval every 5 years thereafter. The landfill must be operated at all times in accordance with the approved DOCP.

The DOCP must include, at a minimum:

- extent and location of each disposal area, clearly shown on a site plan;
- quantities of wastes (solid, liquid and leachate) discharged;
- works associated with each disposal area;
- any proposed restrictions on salvaging by the public;
- scaled site plan accurately showing the legal survey, the engineered final design footprint, and final design contours;
- proposed litter control measures on-site and at neighbouring properties;
- proposed measures to meet the Landfill Gas Regulation and landfill gas health and safety requirements;
- proposed surface and groundwater management plan including an assessment of the adequacy of the number and location of groundwater monitoring wells;
- proposed preliminary water quality exceedance response plans;
- proposed maximum lift height of compacted waste;
- proposed leachate system design and management plan, including the priority of and circumstances dictating when effluent is sent to the phytoremediation stand and when it is sent to the infiltration trench;
- proposed maximum allowable surface area of exposed waste;
- proposed maximum volume of waste in a cell at any given time;
- proposed method, coverage (area) and timing of progressive closure;

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

- design, construction and operation of the liquid waste (septic tank pumpage) disposal lagoon(s);
- signage and fencing at and around the liquid waste disposal lagoon(s);
- nature/volume of wastes to be discharged at the liquid waste lagoon(s);
- location of the designated wood residue open burning area;
- groundwater model that, in relation to the final landfill design:
 - (i) is developed by a qualified professional (experienced in groundwater hydrogeology);
 - (ii) outlines the groundwater regime including flow directions, estimated rates, inferred leachate plume, etc. at and in the surrounding area of the landfill site influenced by landfill leachate;
 - (iii) appropriately assesses the correct number and location of wells such that groundwater can be intercepted and assessed to determine groundwater quality and flow direction;
 - (iv) estimates the loadings of Potential Contaminants of Concern (PCOC)'s from landfill leachate to the environment. The groundwater model and PCOC loading estimates must be updated with each review of the DOCP.
- maximum allowable slopes of the various disposal areas;
- engineered final design footprint delineating the maximum extent of solid waste disposal allowable at the facility horizontally and vertically;
- engineered excavation grade for municipal solid waste;
- landfill design waste density;

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

- proposed notification schedule for closure;
- proposed closure plan including:
 - i) intended end-use of the landfill property after closure;
 - ii) anticipated total waste volume, tonnage, and life remaining of the landfill;
 - a topographic plan showing the final elevation contours of the landfill and surface water diversion and drainage controls;
 - iv) design of the final cover suited to the intended end-use of the site, including the thickness and permeability of barrier layers and drainage layers, and information on topsoil, vegetative cover and erosion prevention controls;
 - v) procedures for notifying the public about the closure and about alternative waste disposal facilities;
 - vi) nuisance wildlife control procedures;
 - vii) a comprehensive long term monitoring plan by a qualified professional, including groundwater monitoring, surface water monitoring, aquatic effects monitoring (including acute and chronic toxicity testing if determined to be necessary), landfill gas monitoring, leachate monitoring, final cover monitoring, and erosion and settlement monitoring, for a minimum post-closure period of 25 years;
 - viii) design, if necessary, for the collection, storage and treatment/use of landfill gas for a minimum 25 year postclosure period
 - ix) plan for the operation of any required pollution abatement engineering works such as leachate collection and treatment systems, for a minimum post-closure period of 25 years; and

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

Sajid A. Barlas, Ph.D., P.Ag. for Director, *Environmental Management Act* Authorizations - North Region

Operational Certificate Number: 17226

x) an estimated cost, updated every five years, to carry out closure and post-closure activities for a minimum period of 25 years.

3. DISCHARGE OF MUNICIPAL SOLID WASTE

Municipal solid waste is authorized to be discharged to ground in accordance with the approved DOCP. The site reference number for this discharge is E288569.

4. <u>STORAGE AND HANDLING OF WASTES FOR SALVAGE AND</u> <u>RECYCLING</u>

Wastes are authorized to be stored and handled for salvage and recycling in accordance with the approved DOCP.

5. DISCHARGE OF MUNICIPAL LIQUID WASTE

Municipal liquid waste is authorized to be discharged to an appropriate discharge facility in accordance with the approved DOCP. The site reference number for this discharge is E288571.

6. <u>DISCHARGE OF TREATED EFFLUENT TO PHYTOREMEDIATION</u> <u>STAND</u>

Treated effluent is authorized to be discharged to the Phytoremediation Stand in accordance with the approved DOCP and Section 9. The site reference number for this discharge is E288572.

7. <u>DISCHARGE OF TREATED EFFLUENT TO WETLAND #4</u> <u>INFILTRATION TRENCH</u>

Treated effluent is authorized to be discharged to the Wetland #4 Infiltration Trench within the Ephemeral Creek Drainage in accordance with the approved DOCP and Section 9. The site reference number for this discharge is E309786.

8. <u>DISCHARGE OF AIR CONTAMINANTS FROM OPEN BURNING OF</u> <u>WOOD RESIDUE</u>

Air contaminants are authorized to be released from the open burning of wood residue in accordance with this section and the approved DOCP. The site reference number for this discharge is E288570.

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

8.1 Location

Any open burning of selected wastes must be restricted to the designated open burning area as shown on the attached site plan and as identified onsite. Signs which identify the nature of the waste acceptable at the designated open burning area must be erected and maintained.

8.2 Quantity, Timing, and Duration of Discharge

The maximum authorized quantity of wood residue to be open burned during each event is that which has accumulated at the time of burn initiation.

The maximum authorized duration of each burn must be limited to the period between two hours after sunrise on the day of ignition, and sunset on the following day. Each open burn must be completely extinguished at the end of the authorized burn duration.

Should a condition arise which prevents the burn pile(s) from being burned within this period, the Director must be notified in accordance with this authorization.

8.3 <u>Nature of Wastes</u>

Acceptable materials for burning may only include dry, unpainted, untreated demolition, construction and packing-related wood residue, clean stumps, prunings, vegetative debris and brush, but must exclude nuisance-causing combustibles such as glue-containing wood, painted and treated wood, sawdust , mulch, wood chips, rubber, plastics, tars, insulation, roofing material, asphalt shingles, etc.

8.4 <u>Favourable Weather for Smoke Dispersion</u>

Open burning must not proceed unless the recorded Environment Canada Ventilation Index Forecast for Smithers is greater than 55 (GOOD) for both days of the proposed burn.

The contact number for the forecast is 1-888-281-2992. Ventilation index forecasts can also be obtained after 7:00 a.m. from the following Environment Canada website: http://www.weatheroffice.gc.ca/forecast/textforecast_e.html?Bulletin=flcn39.cw

<u>vr</u>

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

A burn registration number must be obtained from the Ministry of Forests (1-888-797-1717) prior to ignition.

Open burning of wood residue must not be initiated or continued if the local air flow will cause the smoke to negatively impact a nearby population or cause pollution. No burning must occur during periods of fire hazard or when burning is prohibited by other agencies.

8.5 <u>Minimization of Smoke</u>

Each burn must be tended in a manner that ensures minimization of smoke emissions. Measures to minimize smoke must include, but not necessarily be limited to: stacking of waste in a manner that eliminates inclusion of dirt; waiting to burn until wastes are reasonably dry after any significant precipitation event; and using adequate equipment and staff.

8.6 <u>Extinguishment Contingency Plan</u>

Prior to burning, a contingency plan must be in place detailing how the open burn will be extinguished in the event of any of the following occurring:

- i) Inadequate smoke dispersion in the surrounding environment;
- ii) wood continues to smoulder after the authorized burn period; and,
- ii) the Director requires that the open burn be extinguished for environmental protection reasons

8.7 Extinguishment

All combustion must be completely extinguished at the end of the authorized period as set out in Section 8.2

9. <u>LEACHATE MANAGEMENT REQUIREMENTS</u>

9.1 Leachate Management

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

9.1.1 Leachate Containment

A leachate containment and appropriate barrier system must be utilized. The barrier system must consist of a minimum of 2 metres of natural *in-situ* clay with a hydraulic conductivity of 1 x 10^{-6} cm/s or less. Alternatively, an engineered barrier may be used provided it is equivalent to or better than the natural clay barrier specified above.

9.1.2 Leachate Collection

A leachate collection system must be utilized. A continuous drainage blanket must be established beneath all landfill phases. The drainage blanket must consist of, or be equivalent to, a minimum 300 mm thick layer of clean gravel with an effective hydraulic conductivity exceeding 1×10^{-1} cm/s. The leachate collection system must be designed such that the hydraulic head on top of the barrier layer does not exceed 300 mm at any time.

9.1.3 Quantity of the Discharge

The maximum authorized quantity of discharge is indeterminate.

9.1.4 <u>Timing of the Discharge</u>

The discharge may occur 24 hours/day, 7 days/week, 365 days/year if in accordance with Sections 9.1.5, 11.1 and 11.2.

9.1.5 <u>Characteristics of the Discharge</u>

Acceptable constituents of the effluent include landfill leachate, liquid waste from the septage facility, site storm water, and run-off from the Phytoremediation Stand. The effluent must be directed in order of priority to the Phytoremediation Stand (Section 6), or to Wetland #4 Infiltration Trench within the Ephemeral Creek Drainage (Section 7) and as established in the DOCP.

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

The characteristics of the effluent discharged to the Phytoremediation Stand (Section 6) or Wetland #4 Infiltration Trench within the Ephemeral Creek drainage (Section 7) must not exceed the following limits:

Daphnia magna acute	50% survival in 100%
lethality ^{*,1}	concentration, Minimum
Total Nitrogen	60 mg/L
Ammonia	30 mg/L
pH	6.5 to 8.5
Chloride	3750 mg/L
Total Iron	4.5 mg/L
Total Zinc	75 mg/L
Total Cadmium	0.1 mg/L

* not applicable if discharge only occurs to the Phytoremediation Stand

¹ this limit becomes effective June 30 2019 to allow for commissioning of the works and an assessment of the first year of monitoring data and effectiveness to occur as required in Section 12.2(iii)

9.1.6 <u>Site Water Balance Model and Phytoremediation Stand Uptake</u> <u>Review</u>

By December 31 2023 a qualified professional must re-evaluate the site water balance model including the rate of effluent uptake by the trees in the Phytoremediation Stand. Recommendations for any alterations to the discharge requirements in this section must be submitted to the Director by June 30 2024.

9.1.7 <u>Authorized Works</u>

The authorized works include storm water collection infrastructure, leachate collection and treatment facilities including an equalization basin, 4 engineered wetlands, and a sand filter and related appurtenances, with the final point of discharge being to either the Phytoremediation Stand or to the Wetland #4 Infiltration Trench within the Ephemeral Creek drainage approximately as shown on the attached Site Plan A. It is permissible to bypass one or more components of the authorized works in order to achieve improved effluent quality through recirculation or additional

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

retention time. In all cases, Section 9.1.5 must be met prior to discharge.

9.1.8 <u>Authorized Works Functionality</u>

The operational certificate holder must not discharge under this authorization unless the authorized works are complete and fully functional according to the treatment flow options as established in the DOCP.

10. GENERAL REQUIREMENTS

10.1 Lethal Toxicity of the Discharge

Commencing July 1, 2019 (post facility commissioning period) for any discharge to the Wetland #4 Infiltration Trench within the Ephemeral Creek Drainage (Section 7) the treated effluent and storm water must not be lethally toxic to aquatic organisms at the point of discharge (Wetland #4 Outlet Culvert) For the purposes of this 48 hour test, in >95% effluent concentration, there must be a minimum 50% survival of Daphnia magna. This Section does not apply to discharges of effluent to the Phytoremediation Stand (Section 6).

10.2 **Prohibited Wastes**

No wastes as defined by the Hazardous Waste Regulation (B.C. Reg. 243/2016, November 1, 2017) must be treated or disposed of at this site except as authorized by the Director. Materials which are regulated under the Recycling Regulation must not be treated or disposed of at this site if local marshalling and recycling facilities are available.

10.3 Waste Asbestos

Notwithstanding Section 10.2 of this operational certificate, the disposal of waste asbestos under Section 3 of this operational certificate and in compliance with the requirements of Section 40 of the Hazardous Waste Regulation is hereby authorized.

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

Sajid A. Barlas, Ph.D., P.Ag. for Director, *Environmental Management Act* Authorizations - North Region

Operational Certificate Number: 17226

10.4 Contaminated Soil

Soil that contains contaminants in concentrations less than "Hazardous Waste" as defined by the Hazardous Waste Regulation may be disposed at the landfill site. Disposal does not include use as final cover material.

10.5 Waste Measurement

The quantity of waste material landfilled at the site must be measured or estimated on an annual basis. This data must be made available for inspection upon request.

10.6 Surface Water Quality Exceedances Response Plan

The operational certificate holder must submit to the Director, a response plan detailing how the operational certificate holder will report and respond to:

> • exceedances at sampling station SW-09 of the British Columbia Water Quality Guidelines for the Protection of Aquatic Life (BCWQGAL)

The response plan must be submitted a minimum of 60 days prior to the commissioning (first discharge) of the leachate treatment system. Upon completion, the response plan must also form a part of the approved DOCP.

10.7 Surface Water Quality Assessment

If, during the course of monitoring under Section 11.4, surface water quality measured at the property boundary (SW-09) exceeds the BCWQGAL then the operational certificate holder must implement the Surface Water Quality Exceedances Response Plan required in Section 10.6. The Director must be notified within 24 hours of the operational certificate holder triggering the response plan required in Section 10.6.

10.8 Ground Water Quality Exceedances Response Plan

The operational certificate holder must submit to the Director, a response plan detailing how the operational certificate holder will report and respond to:

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

• exceedances at sampling stations SGW-2, SGW-4, SGW-5, BH-3 and BH-5B of the Contaminated Sites Regulation Schedule 6 Drinking Water Standards

The response plan must be submitted a minimum of 60 days prior to the commissioning (first discharge) of the leachate treatment system. Upon completion, the response plan must also form a part of the approved DOCP.

10.9 Ground Water Quality Assessment

If, during the course of monitoring under Section 11.3, ground water quality measured at sampling stations SGW-2, SGW-4, SGW-5, BH-3 and BH-5B exceeds the Contaminated Sites Regulation Schedule 6 Drinking Water Standards then the operational certificate holder must implement the Ground Water Quality Exceedances Response Plan required in Section 10.8. The Director must be notified within 24 hours of the operational certificate holder triggering the response plan required in Section 10.8.

10.10 Electric Fencing

10.10.1 Design, Construction and Maintenance

Wherever required, electric fencing and gate systems at the landfill must be designed, constructed, and maintained such that bears are prevented from entering into the landfill through any portion of the fence or gates at any time of the day.

10.10.2 Fence Type

Fencing may be either high tensile smooth wire or fence fabric (e.g., mesh-wire, page-wire, chainlink or the like). The configuration of a high tensile smooth wire fence must consist of a minimum of eight strands, with four energized strands alternating with four grounded strands as follows: the bottom strand must be a grounded (-) strand and must not be more than 10 cm from the earth at any location; and thence starting from the bottom strand, the other seven strands must be spaced 15 ± 2 cm, 15 ± 2 cm, 15 ± 2 cm, 20 ± 2 c

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

A fence fabric may be used instead of high tensile smooth wire. The fence fabric must: be a minimum of 1.22 metre high; be constructed of a minimum wire thickness of 11 gauge, and have a maximum mesh size of 15 cm. The bottom of the fabric must not be more than 10 cm from the earth at any location. Any uncharged fence fabric must have a minimum of four strands of charged wires on an outrigger system, spaced as follows: the first strand must not be higher than 25 cm from the earth; and each of the remaining three strands must be spaced approximately 25 cm apart from adjacent charged strands.

10.10.3 <u>Wire Tension</u>

For a high tensile smooth wire fence construction, all strands must be tightened to a minimum of 125 lbs tension at 20°C. The required tension is to be corrected for temperature by use of the following formula for $12-\frac{1}{2}$ gauge high tensile steel wire:

Tension = 125 - 2.5(Temperature - 20)

where: *Tension* is in lbs force

Temperature is in °C

10.10.4 Post Spacing

Fence posts must be spaced a maximum of 7.5 metres apart.

10.10.5 Grounding System

A grounding system must be installed consisting of solid grounding rods (i.e., not pipe) with a minimum diameter of 16 mm (5/8 inch) that have a buried length of at least 2 metres. A minimum of three grounding rods (spaced at least 3 metres apart) must be installed and connected to the energizer. Alternative energizer grounding systems (e.g., grounding plates, or a deep-driven grounding system) may be used provided the grounding is equivalent to or better than three grounding rods. A grounding rod (or equivalent) must be installed at least once every 450 metres along the fence and connected to the grounded wire strands or uncharged fence fabric. Additional grounding may be required for dry sites or if other conditions affect proper grounding.

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

Sajid A. Barlas, Ph.D., P.Ag. for Director, *Environmental Management Act* Authorizations - North Region

Operational Certificate Number: 17226

10.10.6 Period of Operation

Electric fencing must be fully operational during the period of April 1 to October 31 inclusive each year and at any other time of year when there is bear activity in the immediate surrounding area. If snow is present during this period, any electrified strands above the snow line must be isolated from the remainder of the system and energized.

10.10.7 <u>Minimum Voltage</u>

Electric fencing must be operated with a minimum voltage of 6,000 volts.

10.10.8 <u>Gate(s)</u>

Any access through electric fencing for vehicles, equipment and personnel must consist of an electrified gate system that is closed during non-operating hours. The gate system must be electrified to a minimum voltage of 6,000 volts at all times except when being opened or closed. Any gate that is open during operating hours must be periodically checked by the attendant for bear activity during hours of operation. Gaps between the gate and the fence and the earth, and between gate panels (for a double-hung gate), must not exceed 10 cm.

10.10.9 Fence Inspections

The perimeter of the electric fencing must be inspected on every day that the site is open to the public and the voltage of the fencing measured at several points and at each gate using a proper electric fence voltmeter. The results of voltage testing must be recorded in a log book. Any results less than the minimum 6,000 volts must be immediately investigated for the cause of the low voltage (e.g., low battery, litter, vegetation, loose or crossed wires, broken insulators, breaks in the grounding system, etc.). Corrective actions to restore proper voltage must be immediately undertaken.

Any discernible penetrations through electric fencing by bears and other wildlife must be immediately reported to the Conservation Officer Service at 1-877-952-7277 and to the Director at 1-250-847-7260.

In cases of low voltage or signs of penetration attempts, inspections must be increased from once per week to once per day until proper

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

voltage is fully restored and until there are no new signs of penetration attempts, respectively.

10.11 Dead Animal Disposal

Dead animals and animal parts must be disposed of in the solid waste disposal area and covered as soon as practicable with a minimum of 60 centimetres of soil and/or waste material such that flies and scavenging animals are prevented from accessing the carrion. Disposal of Specified Risk Material from cattle must only be done in accordance with Canadian Food Inspection Agency requirements and procedures.

11. MONITORING REQUIREMENTS

The operational certificate holder must carry out an environmental monitoring program for the locations specified below and as shown on Site Plan "B" as follows:

Location	Parameters	Frequency
Effluent: E288572 Treated Leachate Post Sand Filter/Pre Phytoremediation Stand	<u>Lab:</u> total metals, alkalinity, chloride, fluoride, sulphate, hardness, ammonia, nitrate, nitrite, total organic carbon,	Lab/Field: Once prior to first discharge event of the year (spring) and once per summer and fall
	intrite, total organic carbon, orthophosphorus, COD, BOD, VOCs ¹ , pH <u>Field:</u> conductivity, temperature, DO, turbidity, volume (flow measurement)	<u>Volume</u> : Continuous during discharge
Soil: E309686 Composite Soil Sample ² from Phytoremediation Stand	<u>Lab:</u> metals, salinity, nutrients, cations, ions	<u>Lab:</u> Once annually, prior to first discharge of the year, as well as baseline data collection prior to very first discharge to the phytoremediation stand soil

11.1 Treated Effluent to Phytoremediation Stand

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

¹One-time sample of VOCs for background levels, to be taken during first sampling event 2018 ²Composite sample assembled from 4 locations from a pre-established list of 12 locations

Location	Parameters	Frequency
Effluent:		
E309786 Treated Leachate at Wetland#4 Outlet	Lab: total metals, alkalinity, chloride, fluoride, sulphate, hardness, ammonia, nitrate, nitrite, total organic carbon, orthophosphorus, COD, BOD, VOCs ¹ , pH	Lab/Field: Once prior to first discharge event of the year (spring) and once per summer and fall. Monthly if discharging at any time during other months
	<u>Field:</u> conductivity, temperature, DO, turbidity, volume (flow measurement), visual ²	<u>Volume</u> : Continuous during discharge <u>Visual:</u> Traverse area between Wetland # 4 Infiltration Trench and SW- 09 twice per week during any period of discharge to identify any surface breakouts of discharge
	<u>Acute Toxicity:</u> Daphnia magna	<u>Acute Toxicity:</u> Once prior to start of each distinct continuous discharge event, or at least once per spring, summer and fall during discharge, whichever is more frequent

11.2 **Treated Effluent to Wetland #4 Infiltration Trench**

¹One time sample of VOCs for background levels, to be taken during first sampling event 2018 ²Visual inspection to detect surfacing of effluent between Wetland #4 Infiltration Trench and SW-09. If surface flow of effluent is detected, then the discharge must cease and the Director must be notified within 24 hours

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

11.3 Groundwater Monitoring

Location	Parameters	Frequency
E251512 BH-01	Lab:	
E251513 BH-02	dissolved metals, alkalinity,	
E251514 BH-03	chloride, fluoride, sulphate,	Quarterly→Annually ³
E252313 BH-4B	hardness, ammonia, nitrate,	
E252314 BH-5B	nitrite, TOC, COD, VOCs ² ,	
E309746 SGW-1	pH	
E309747 SGW-2	_	
E309748 SGW-3		
E309749 SGW-41		
E309750 SGW-51	Field:	
	conductivity, temperature,	Monthly→Quarterly ³
	water elevation ⁴	

¹ Wells must be installed by September 30 2018

²One-time sample of VOCs for background levels, taken during first sampling event 2018

³ Quarterly reduced to annually and monthly reduced to quarterly following two complete years of sampling ⁴ Water elevation quarterly

11.4 Surface Water Monitoring

Location	Parameters	Frequency
E309751 SW-01 E309752 SW-02 E287409 SW-05 E309754 SW-06 E287410 SW-07 E273812 SW-08	<u>Lab:</u> total metals, chloride, fluoride, sulphate, hardness, ammonia, nitrate, nitrite, COD, BOD, pH	Minimum annually ² and once during Spring, Summer, Fall if discharging during these seasons
E310968 SW-091 (property	Field:	
boundary) E310969 SW10 (downstream of BH-03)	conductivity, temperature, turbidity, flow rate, pH, dissolved oxygen	Minimum annually ² and once during Spring, Summer, Fall if discharging during these seasons

¹ SW-09 as near to property boundary as possible but at a location where discernible flow begins in ephemeral creek drainage

² annual sample date should be consistent year to year, and preferably taken in fall

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

11.5 Ground and Surface Water Monitoring Procedures

11.5.1 Sampling Procedures

The operational certificate holder must carry out sampling in accordance with the procedures described in the "British Columbia Field Sampling Manual for Continuous Monitoring and the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment, and Biological Samples, 2013 Edition (Permittee)" or most recent edition, or by alternative procedures as authorized by the Director.

A copy of the above manual is available on the Ministry web page at www.env.gov.bc.ca/epd/wamr/labsys/lab_meth_manual.html

11.5.2 Analytical Procedures

The operational certificate holder must carry out analyses in accordance with procedures described in the "British Columbia Laboratory Manual (2015 Permittee Edition)", or the most recent edition or by alternative procedures as authorized by the Director.

A copy of the above manual is available on the Ministry web page at www.env.gov.bc.ca/epd/wamr/labsys/lab_meth_manual.html

11.5.3 Toxicity Sampling and Analytical Procedures

Samples must be collected from the discharge described in Section 7 and in accordance with Section 10.1 at frequencies established as per the monitoring program specified in Section 11.2 and tested for Daphnia magna acute lethality. Daphnia magna acute lethality test means the test to determine the acute lethality of effluent to Daphnia magna as set out in Reference Method EPS 1/RM/14.

11.5.4 Quality Assurance/Quality Control (QA/QC)

The operational certificate holder is required to conduct the following Quality Assurance and Control Program to determine the acceptability of data required by this permit and Section 2(d) of the Environmental Data Quality Assurance Regulation.

a) Obtain and keep current, the laboratory precision, accuracy and

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

blank quality control criteria for each laboratory analysed parameter from the analytical laboratory(ies).

- b) Collect one duplicate sample during each sampling session from one of the discharge points.
- c) Each duplicate sample must be submitted to the laboratory; one of the pair identified as the regular sample, and the other, as a blind sample identified by a fictitious site-name established solely to identify the duplicate sample.
- d)For each parameter, report the results of the field duplicates in terms of the degree of variation as the relative percent difference.
- e) A sample collection blank must be prepared, containing distilled water, and preservative if required, and submitted as a blank sample with one sample set per session. If any result for any parameter indicates detectable concentrations, then efforts must be made to determine and control the source of contamination.

12 Data Analyses and Reporting

12.1 Log Book

As required by section 10.10.9 (fence inspections), the operational certificate holder must maintain a log book or electronic record. The log book or electronic record must be made available for inspection upon request by Ministry staff.

12.2 Annual Report

The operational certificate holder must collect and maintain data of effluent and soil analyses, and any other records required under this authorization for inspection when requested by Ministry staff and submit the data for the previous calendar year in a form satisfactory to the Director. The operational certificate holder must submit the annual report on or before June 30 each year for the previous calendar year.

The operational certificate holder must submit all data required to be submitted under this section by email to the Ministry's Routine Environmental Reporting Submission Mailbox (RERSM) at

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

<u>EnvAuthorizationsReporting@gov.bc.ca</u> or as otherwise instructed by the Director. For guidelines on how to properly name the files and email subject lines or for more information visit the Ministry website:

http://www2.gov.bc.ca/gov/content/environment/wastemanagement/waste-discharge-authorization/data-and-reportsubmissions/routine-environmental-reporting-submission-mailbox

The annual report must contain at minimum:

- i) The type and tonnage or volume of waste received, recycled, composted and landfilled for the year;
- Volume of effluent discharged to each of the Phytoremediation Stand and Wetland #4 Infiltration Trench within the Ephemeral Creek Drainage, with tabulation of volume and duration of each discharge event and the total volume discharged per year;
- iii) Occurrences or observations of wildlife attempting to access the facility;
- iv) The results of all required monitoring programs undertaken by the operational certificate holder for the site. Trend analysis, evaluation of any identified impacts of the discharges on the receiving environment in the previous year, and evaluation of the effectiveness of the established monitoring programs must be carried out by qualified professionals appropriate to the subject matter. Any identified recommendations must be included as they pertain to the ground water, surface water and aquatic effects (including acute toxicity) monitoring programs. Should the parameters and frequencies of the previous year's monitoring programs be identified as being not representative of receiving environment conditions, recommendations must be made for corrective actions that can be taken. Recommendations can be made to either increase or decrease parameters and frequency of any monitoring program

12.3 Non-Compliance Notification

The operational certificate holder must immediately notify the Director or designate by email at <u>EnvironmentalCompliance@gov.bc.ca</u> or as otherwise instructed by the Director, of any non-compliance with the

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

requirements of this authorization by the operational certificate holder and take remedial action to remedy any effects of such non-compliance. The operational certificate holder must provide to the Director with written confirmation of all such non-compliance events, including available test results, within 24 hours of the original notification, unless otherwise directed by the Director.

12.4 Non-Compliance Reporting

If the operational certificate holder fails to comply with any of the requirements of this authorization, the operational certificate holder must, within 30 days of such non-compliance, submit a written report that is satisfactory to the Director and includes, but is not necessarily limited to the following:

- a. all relevant test results obtained by the operational certificate holder related to the non-compliance,
- b. an explanation of the most probable cause(s) of the non-compliance, and,
- c. a description of remedial action planned and/or taken by the operational certificate holder to prevent similar non-compliances in the future.

The operational certificate holder must submit all non-compliance reporting required to be submitted under this section by email to the Ministry's Compliance Reporting Submission Mailbox (CRSM) at <u>EnvironmentalCompliance@gov.bc.ca</u> or as otherwise instructed by the Director. For guidelines on how to report a non-compliance or for more information visit the Ministry website: http://www2.gov.bc.ca/gov/content/environment/wastemanagement/waste-discharge-authorization/data-and-reportsubmissions/non-compliance-reporting-mailbox

12.5 Non-compliance Reporting and Exceedances

The operational certificate holder must cause each data submission required by this authorization to include a statement outlining the number of exceedances of permitted discharges that occurred during the reporting period, the dates of each such exceedance, an explanation as to the cause of the exceedances, and a description of the measures taken by the operational certificate holder to rectify the cause of each such exceedance.

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

If no exceedances occurred over the reporting period, the required statement may instead indicate that no exceedance of permitted discharges occurred during the reporting period.

12.6 Toxicity Test Failure Reporting

The operational certificate holder must report any failure of Daphnia magna acute toxicity tests as referenced in Sections 10.1, 11.2 and 11.5.3 to the Director within 24 hours of receiving the test failure result. As required in Section 9.1.5, beginning July 1, 2019, no discharge to the Wetland #4 Infiltration Trench may occur following a failed toxicity test unless there is a successful test result (non-failure) for Daphnia magna toxicity.

13. <u>Closure Requirements</u>

13.1 Notification of Closure

The operational certificate holder must notify the Director in writing of intentions to close the landfill site at least one year prior to closure date.

13.2 Closure Plan

As per Section 2 (Design, Operations and Closure Plan) closure requirements must be included in the DOCP.

13.3 Closure Funding

The operational certificate holder must ensure that sufficient funds will be available to provide for all closure and post-closure requirements as outlined in the closure plan required in Section 2, plus a reasonable contingency for any remediation which may be required.

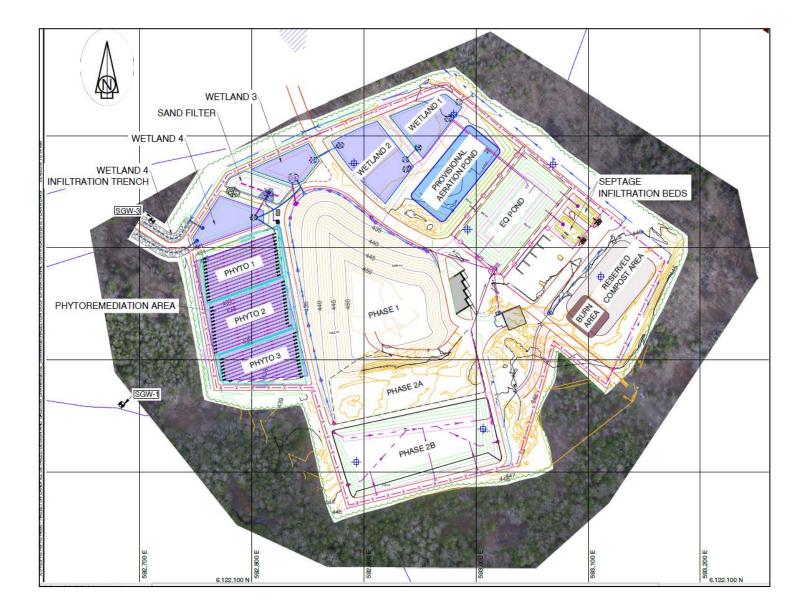
13.4 Final Cover

The final cover system must be designed by a qualified professional to match the intended end-use of the landfill site and to match the needs of any required environmental management systems (leachate minimization or recirculation, as the case may be, landfill gas collection and treatment, etc.). The final cover must consist of a layer of a minimum 600 mm of low permeability (<1 x 10^{-6} cm/s) compacted soil followed by a layer of topsoil suitable for establishment of vegetation. Use of higher permeability soil must first be approved by the Director. The final cover

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

must be constructed with minimum and maximum slopes as specified by a qualified professional in the DOCP to promote runoff and minimize erosion, with appropriate run-on/runoff drainage controls, erosion controls, and gas venting controls. The site must be seeded with a grass/legume mixture suited to the local climate.

13.5 Progressive Application of Final Cover

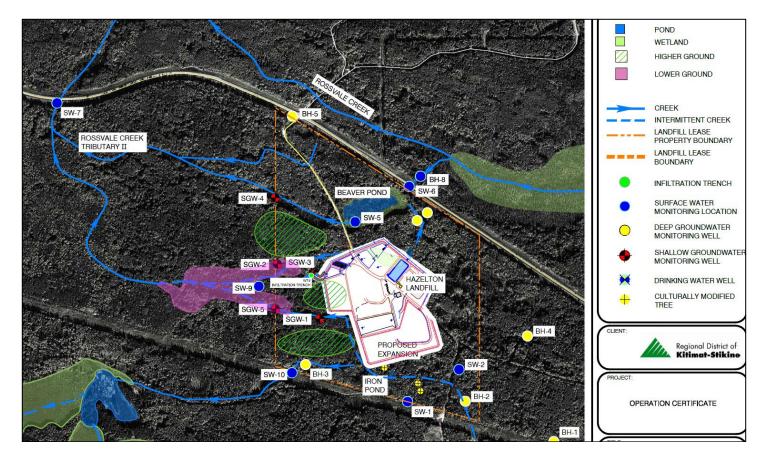

Completed portions of the landfill must progressively receive final cover during the active life of the landfill. The maximum area of disposed refuse that has not yet received final cover must not exceed 25% of the total final footprint area. Final cover is to be applied according to the specifications identified in section 13.4.

14. ENVIRONMENTAL IMPACT

Inspections of the discharge will be carried out by Environmental Protection personnel as a part of the routine operational certificate inspection procedure. Based on these inspections and any other information available to the Director on the effect of the discharge on the receiving environment, the operational certificate holder may be required to undertake additional monitoring, install additional pollution control works, or change the method of operation.

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

Site Plan A



Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

Sajid A. Barlas, Ph.D., P.Ag. for Director, *Environmental Management Act* Authorizations - North Region

Operational Certificate Number: 17226

Site Plan B

Date issued: Date amended: (most recent) May 30, 2013 February 7, 2018

Sajid A. Barlas, Ph.D., P.Ag. for Director, *Environmental Management Act* Authorizations - North Region

Operational Certificate Number: 17226

Appendix E: Acute Toxicity Test Results – Wetland #4

REGIONAL DISTRICT OF KITIMAT-STIKINE ATTN: Chris Kerr # 300 - 4545 Lazelle Avenue Terrace BC V8G 4E1 Date Received: 24-MAY-19 Report Date: 06-JUN-19 13:45 (MT) Version: FINAL

Client Phone: 250-615-6100

Certificate of Analysis

Lab Work Order #: L2279188

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED HAZELTON SURFACE WATER 17-721326

amber Springer

Amber Springer, B.Sc Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID			
Grouping	Analyte			

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	------------------	--------------------

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

Chain of Custody Numbers:

17-721326

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Quality Control Report

		Workorder	L227918	8	Report Date:	06-JUN-19	Pa	ge 1 of	2
Client:	REGIONAL DISTRICT	OF KITIMAT-STIK	INE						
	# 300 - 4545 Lazelle A	venue							
	Terrace BC V8G 4E1								
Contact:	Chris Kerr								
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	

Quality Control Report

Workorder: L2279188

Report Date: 06-JUN-19

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Acute Toxicity Test Results

Sample L2279188-1 WETLAND #4, collected May 23, 2019

Final Report

June 5, 2019

Submitted to: **ALS Environmental** Burnaby, BC

8664 Commerce Court, Burnaby, BC V5A 4N7

SAMPLE INFORMATION

		Dates		Dessint	
Sample ID	Collected	Received	Rainbow trout test initiation	 Receipt temperature 	
L2279188-1 WETLAND #4	23-May-19 at N/A	25-May-19 at 1140h	27-May-19 at 1445h	6.3°C	

N/A = Not Available

TESTS

• Rainbow trout 96-h LC50 test

RESULTS

Toxicity test results

Sample ID	LC50 (% v/v)	
L2279188-1 WETLAND #4	>100	

LC = Lethal Concentration

QA/QC

QA/QC summary	Rainbow trout
Reference toxicant LC50 (95% CL)	100.0 (71.7 – 139.4) μg/L Zn¹
Reference toxicant historical mean (2 SD range)	88.8 (40.4 – 195.0) μg/L Zn
Reference toxicant CV	41%
Organism health history	Acceptable
Protocol deviations	None
Water quality range deviations	None
Control performance	Acceptable
Test performance	Valid

¹Test date: May 22, 2019, LC = Lethal Concentration, CL = Confidence Limits, SD = Standard Deviation,

CV = Coefficient of Variation

Report By: Yvonne Lam, B.Sc. Laboratory Biologist

Som

Reviewed By: Edmund Canaria, R.P. Bio Senior Analyst

This report has been prepared by Nautilus Environmental Company Inc. based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party. The results presented here relate only to the samples tested.

APPENDIX A – Summary of test conditions

Test species	Oncorhynchus mykiss
Organism source	Hatchery
Organism age	Juvenile
Test type	Static
Test duration	96 hours
Test vessel	20-L glass aquarium
Test volume	10 to 20 L (depending on size of fish)
Test solution depth	≥15 cm
Test concentrations	Five concentrations, plus laboratory control
Test replicates	1 per treatment
Number of organisms	10 per replicate
Control/dilution water	Dechlorinated Metro Vancouver municipal tapwater
Test solution renewal	None
Test temperature	15 ± 1℃
Feeding	None
Light intensity	100 to 500 lux
Photoperiod	16 hours light / 8 hours dark
Aeration	6.5 ± 1 mL/min/L
Test measurements	Temperature, dissolved oxygen and pH measured daily; salinity measured in the undiluted sample at test initiation; conductivity measured at test initiation and termination; survival checked daily
Test protocol	Environment Canada (2000), EPS 1/RM/13, with 2007 & 2016 amendments
Statistical software	CETIS Version 1.9.4
Test endpoints	Survival (96-hour LC50)
Test acceptability criterion for controls	Survival ≥90%
Reference toxicant	Zinc (added as ZnSO ₄)

Table 1.Summary of test conditions: 96-h rainbow trout (Oncorhynchus mykiss)LC50 test.

APPENDIX B – Toxicity test data

Rainbow Trout Summary Sheet

Client:	ALS Environmental
Work Order No.:	191050
. •	

Sample Information:

Sample ID:	12279188-1 Wetland #4
Sample Date:	May 23, 2019
Date Received:	Mar 25, 2019
Sample Volume:	Ax20L
Other:	

Start Date/Time: May 27,2019 1445h

Test Species: Oncorhynchus mykiss

Test Validity Criteria: ≥ 90% control survival

WQ Ranges:

T (°C) = 15 ± 1; DO (mg/L) = 7.0 to 10.3; pH = 5.5 to 8.5

Dilution Water:

Туре:	Dechlorinated Municipal Tap Water
Hardness (mg/L CaCO ₃):	14
Alkalinity (mg/L CaCO ₃):	12

Test Organism Information:

Batch No.:	0426196
Source:	Aqua Farms
No. Fish/Volume (L):	10/121
Loading Density (g/L):	0.43
Mean Length ± SD (mm):	<u>40 ± 3</u>
Mean Weight ± SD (g):	0.52 ± 0.12

Range:	37		<i>ት</i> ጉ
Range:	0.41	,	0.80

Zinc Reference Toxicant Results:

RTZN157
19Zn03
May 22, 2019
100.8 (71.7 - 139.4) Mgll Zn

Reference	Toxicant Mea	n and	Historical	Range:
Reference	Toxicant CV ((%):		

88.8 (40.4 - 195.0) yell In 41"/.

Test Results:

The 96 hour LCSO is estimated to be > 100%. (V/v).

Reviewed by:

Ú

Ine 6, 2017 Date reviewed:

Version 1.4; issued May 29, 2015.

Nautilus Environmental Company Inc.

96-Hour Rainbow Trout Toxicity Test Data Sheet

Client/Project#:	ALS Environmental
Sample I.D.	12279188-1 Wetland #4
W.O. #	191050
RBT Batch #:	0426196
Date Collected/Time:	May 23/19@ not available
Date Setup/Time:	Man 27/19 @ 1445h
CER #:	2
Sample Setup By:	QD

Thermometer: $\underline{Cl/2}$ D.O. meter/probe: $\underline{2}$ / $\underline{02}$ Cond./Salinity meter/probe: $\underline{2}$ / $\underline{02}$ pH meter/probe: $\underline{2}$ / $\underline{02}$

Number Fish/Volume:	10/124		
7-d % Mortality:	0%		
Total Pre-aeration Time (mins):	30		
Aeration rate adjusted to 6.5 ± 1 m	L/min/L? (Y/N):	- Y	

	Undilute	d Sample WQ	
Parameters	Initial WQ	Adjustment	30 min WQ
Temp °C	15.0	1	15.0
D.O. (mg/L)	8.5		9.0
pН	8-1		8.1
Cond. (µS/cm)	628		626
Salinity (ppt)	0.3	1	0.3

b.25 10 10 10 10 10 150 15.0 14.5 100 12.5 9.3 9.2 9.2 7.4 7.0 12.5 10 10 10 10 150 15.0 14.5 100 8.9 9.5 9.1 9.3 7.4 20 12.5 10 10 10 10 15.0 15.0 14.5 100 8.9 9.5 9.1 9.3 7.4 20 2.5 10 10 10 10 15.0 15.0 14.5 10.0 9.6 9.5 9.1 9.3 7.6 7.6 2.6 7.6 10 10 10 15.0 15.0 14.5 10.0 9.6 9.5 9.1 9.3 7.6 7.6 9.0 8.2 9.4 8.0 8.0 8.0 100 10 10 10 10 10 15.0 15.0 14.5 15.0 9.7 9.6 9.4 9.4 8.0 8.0 100 10 10 <th>48 72 96 7.0 7.1 7.0</th> <th></th>	48 72 96 7.0 7.1 7.0	
6.25 10 10 10 10 10 10 150 150 14.5 100 12 9.3 9.2 9.2 7.4 7.0 12.5 10 10 10 10 10 10 150 150 14.5 100 8.9 9.3 9.2 9.2 7.4 20 12.5 10 10 10 10 10 150 150 14.5 100 8.9 9.5 91 9.3 7.4 20 2.5 10 10 10 10 150 150 14.5 100 9.6 9.5 9.1 9.3 7.6 7.6 3.0 10 10 10 10 150 150 14.5 150 9.7 9.6 9.6 9.2 9.4 8.0 8.0 8.0 100 10 10 10 150 150 14.5 150 9.7 9.6 9.4 9.4 8.1 8.4 100 10 10 150 10 14.5 <td></td> <td>0</td>		0
17.5 10 10 10 10 150 150 14.5 150 14.5 100 8.9 9.5 91 9.3 7.4 20 25 10 10 10 10 15.0 15.0 14.5 150 14.5 10.0 9.6 9.5 91 9.3 2.6 2.6 50 10 10 10 10 15.0 15.0 14.5 150 14.5 9.7 9.6 9.6 9.2 9.4 8.0 8.0 100 10 10 10 10 15.0 15.0 14.5 150 14.5 9.0 9.7 9.6 9.6 9.2 9.4 8.0 8.0 100 10 10 10 15.0 15.0 14.5 150 14.5 9.0 9.7 9.6 9.6 9.1 9.4 8.1 84 Initials 30 8 30 8 30 8 30 8 30 8 30 8 30 8 30	(193)	0 32 38
10 10 10 10 10 10 10 10 10 14 150 14	7.1 7.2 7.	2 59 64
50 100 100 100 100 100 100 100 100 100 1	7.3 7.3 7.	3 102 105
100 10 10 10 10 150 160 145 150 145 90 9.7 9.6 9.1 9.4 21 84 Initials Jp B Jp B Jp B Jp B Jp B Jp B Jp B Jp	7.6 7.6 7.	6 172 176
Initials Jp & Jp & Jp & Jp & Jp & Jp & Jp & Jp	7.9 7.9 7.	9 334 339
	8.3 8.3 8.	3 626 626
	B 50 B	50 3
Sample Description/Comments: <u>Turbial yellow liquid. Dryanic particulates.</u> Ta	/ 0	
Fish Description at 96 h <u>All fish appears Normal</u> Number of Stressed Fish at 96 h <u>C</u>		
Other Observations:		
Reviewed by: Date Reviewed:	ture 6	,2019
ersion 2.5; Issued July 19, 2017		lautilus Environmental Com

APPENDIX C – Chain-of-custody form

Subcontract Request Form

Subcontract To:

NAUTILUS ENVIRONMENTAL

8664 COMMERCE COURT BURNABY,BC V5A 4N7

NOTES: Please reference on final r ALS requires QC data to b	eport and invoice: PO# <u>L2279</u> be provided with your final results.	<u>188</u>	
Please see enclosed <u>1</u> samp	ole(s) in <u>4</u> Container(s)		
SAMPLE NUMBER ANALYTIC	AL REQUIRED	DATE SAMPLED DUE DATE	Priority Flag
L2279188-1 WETLAND #4 Trout Bioas LC50-96HR	say LC50 (96 Hour) - Nautilus (TROUT -NL 1)	5/23/2019 - 6/5/2019	
Subcontract Info Contact: Analysis and reporting info contact:	Walter Lin (604) 253-4188 Amber Springer, B.Sc 8081 LOUGHEED HWY SUITE 100 BURNABY,BC V5A 1W9	*NEW* Reporting Contacts: 1.Account Manager Listed Below 2.ALSEVDataSublet@ALSGlobal.com 3.ALSE.CASDG@ALSGlobal.com (ED	(PDF / EXCEL) D/Database Formats)
Please email confirmation of receip	Phone: (604) 253-4188	Email: amber.springer@als	global.com
Shipped By:	Date Shipped:	Min 25	2019
Received By:	Date Received:	May 25/19	C ilroh
Verified By:	Date Verified:	6.3	°C
Sample Integrity Issues:	Temperature:	<u> </u>	201

WO# 191050

END OF REPORT

Chain of Custody (COC) / Analytical **Request Form**

COC Number: 17 - 721326

JULY 2017 FRONT

Page of

(ALS)	Environmental	Canada Toll F	ree: 1 800 66	8 9878	L		JUH	C														
	www.alsglobal.com																					
Report To	Contact and company name below will appear on the final re			Report Format	/ Distribution —		<u>r : .</u>			<u> </u>		JW - (Contac	t your	AM to co	onfirm	all E&P	' TATs (f	surcharge	as may a	apply)	
Company:	kes Dist of Kehmat.S	HKINE SE	Select Report Format: PDF FEXCEL EDD (DIGITAL)					Reg	gular ([R] [Sta	andard 1	TAT if re	ceived t	by 3 pm - l	business	s days - r	io surcha	rges apply			
Contact:	CIARIS KERK	Qu		QC) Report with Rep			≿	4 day	/ [P4-2	20%]			Å	Busi	iness da	ay [E-1	100%]					
Phone:	250-641-4141		Compare Resu	ts to Criteria on Report -	provide details below if	f box checked	RIOR ⁽	3 day	/ [P3-2	25%]			NERO	Same I	Day, We	ekend:	l or Sta	atutory	holiday	(E2-200	0%	Г
	Company address below will appear on the final report	Se	elect Distributio	n: 🔀 EMAIL		FAX	a (Bus)	2 day	/ (P2-5	50%]			<u> </u>	Labor	atory op	pening	j fees r	may ap	piy)]			
Street:	4545 LAZELLE AVE.	Er	nail 1 or Fax	rtooms (Broks.bc	ca		Date a	nd Time	e Requir	red for a	II E&P 1	TATs:	_			cfc	i-mm-	yy hhan	.m		
City/Province:	TERRACE B.C.	Er	mail 2 🛛 📿	KERR ØY	dies be	ca	-	ts that ca	n nat be	perform	ed accord	ting to t	he servic	e level s	alected, yo	yu will be	contacte	d.				
Postal Code:	V86-4E1	Er	nail 3 🗂 🗂	Cooseme	wserdi	is be ca	1							Anal	lysis Re	quest				_		
Invoice To	Same as Report To			Invoice Di	stribution				In	dicate F	iltered (F), Prese	erved (P) or Filte	red and Pi	reserved	d (F/P) be	wole			details	
	Copy of Invoice with Report YES Y NO	Se	elect Invoice Di	stribution: 🗹 E		FAX															- e	
Company:	REG Deal of Kitimpt. Stik	ini. Er	nail 1 or Fax 🖌	ense use	Eerdus	.bc.ca	1			1						Τ	<u> </u>				provide further	:
Contact:	REGER Tooms		nail 2 🖸 🕻	xeer e vi	drs. be. c	:a															E L	
	Project Information	- 2		il and Gas Require																	- Pivo	
ALS Account #	/ Quote #:	AF	E/Cost Center:		PO#		1		····			·									ă	:
Job #: 1-11	ZELTON SURFACE WATER	Ma	ijor/Minor Code:		Routing Code:		1														(please	SE SE
PO/AFE:		Re	equisitioner:		•		1														<u>ë</u>	į
LSD:		Lo	cation:			-	ดโ	.			- 1									HOLE	- ä	Ì
ALS Lab We	ork Order # (lab use only):	AI	LS Contact:		Sampler:		16													S		OF CONTAINERS
							10													E	1 1	- C C
ALS Sample # (lab use only)	Sample Identification and/or Coo (This description will appear on the			Date (dd-mmm-yy)	(hh:mm)	Sample Type	$ \tilde{\mathbf{x}} $			_										SAMPLES	Sample	NUMBER
- · ·	WETLAND #4			23/05/19	1:40	water	~															4
	VORTERNO~		-		1											1		1				+
	· · · · · · · · · · · · · · · · · · ·							<u> </u>								+		+		—		-
						+						\rightarrow					—	+	╞──┼╸	-+-		
	· · · · · · · · · · · · · · · · · · ·					ļ									<u> </u>		_	. 	┿╍╍┿╸		—	+-
							<u> </u>									\perp		\perp	\vdash	\perp		1_
																	`					
													-									
		•		· · ·							- 1		-			,				-		
·····				<u> </u>	+									-+	_ -			+	╋╍╋	+		
	· · · · · · · · · · · · · · · · · · ·					· · · ·	-	-						-+					++	+	_	
				· · · ·												—	_	—	+		_	
								-				Ţ										
	Special	Instructions / Spi		add on report by clic	king on the drop-d	own list below	L				SA				AS RE			use or	niy)			_
i i	ng Water (DW) Samples' (client use)		(ele	ctronic COC only)			Froze							serva		Yes	3		1	No		
	en from a Regulated DW System?							acks .		ice C	ubes		Custoo	iy seal	intact	Ye	35		1	No		
	YES 🗹 NO						Cooli	ing 1niti		1										•		
Are samples for	human consumption/ use?								NITIAL	COOLE	R TEMP	PERATU	RES °C				FINA	L COOLE	ER TEMPER	RATURES	3°C	
	YES NO	==					9	Ś.									-					5
	SHIPMENT RELEASE (client use)			INITIAL SHIPMEN	NT RECEPTION (Is	ab use only)							FINAL		MENT R	ECEP	TION (lab use	e only)			
Released by	and May 24/19	Time: F	leceived by:		May 24	. 19	Time	8	Rece	eived b	y:	HA A			Date:		×	10	4	Tin	me: 81	NG
X X I	1 MAR 47 117		170		may UT	r ((1 + ?	20				114	•				<u>></u>	10	1		' X	- 7 F

TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY YELLOW - CLIENT COPY Feiture to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

REGIONAL DISTRICT OF KITIMAT-STIKINE ATTN: Chris Kerr # 300 - 4545 Lazelle Avenue Terrace BC V8G 4E1

Date Received: 13-AUG-19 Report Date: 06-SEP-19 12:09 (MT) Version: FINAL

Client Phone: 250-615-6100

Certificate of Analysis

Lab Work Order #: L2328091 Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc:

NOT SUBMITTED HAZELTON EQ LC50

amben Springer

Amber Springer, B.Sc Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample II Descriptio Sampled Dat Sampled Tim Client II	n e e		
Grouping	Analyte			

Reference Information

Test Method References:

ALS Test Code	LS Test Code Matrix		Method Reference**					
** ALS test methods may incorporate modifications from specified reference methods to improve performance.								

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Quality Control Report

		Workorder	L232809	1	Report Date:	06-SEP-19	Pa	ge 1 of 2	2			
Client:	REGIONAL DISTRICT	OF KITIMAT-STIK	INE									
	# 300 - 4545 Lazelle Avenue											
	Terrace BC V8G 4E1											
Contact:	Chris Kerr											
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed				

Quality Control Report

Workorder: L2328091

Report Date: 06-SEP-19

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Acute Toxicity Test Results

Sample L2328091-1 EQ POND, collected August 12, 2019

Final Report

September 5, 2019

Submitted to: ALS Environmental Burnaby, BC

8664 Commerce Court, Burnaby, BC V5A 4N7

SAMPLE INFORMATION

		Dessint		
Sample ID	Collected Received '		Daphnia magna test initiation	Receipt temperature
L2328091-1 EQ POND	12-Aug-19 at N/A	14-Aug-19 at 1315h	15-Aug-19 at 1300h	6.6 - 8.2°C

N/A = Not Available

TEST

• Daphnia magna 48-h LC50 test

RESULTS

Toxicity test results

Sample ID	LC50 (% v/v)
L2328091-1 EQ POND	>100

LC = Lethal Concentration

QA/QC

QA/QC summary	Daphnia magna
Reference toxicant LC50 (95% CL)	7.3 (6.4 – 8.3) g/L NaCl ¹
Reference toxicant historical mean (2 SD range)	5.4 (3.7 – 7.8) g/L NaCl
Reference toxicant CV	19%
Organism health history	Acceptable
Protocol deviations	None
Water quality range deviations	None
Control performance	Acceptable
Test performance	Valid

¹ Test date: August 7 2019, LC = Lethal Concentration, SD = Standard Deviation, CL = Confidence Limits,

CV = Coefficient of Variation

Report By: Yvonne Lam, B.Sc. Laboratory Biologist

AUL

Reviéwed By: Andy Diewald, B.Sc. Senior Analyst

This report has been prepared by Nautilus Environmental Company Inc. based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party. The results presented here relate only to the samples tested.

APPENDIX A – Summary of test conditions

•		
Test species	Daphnia magna	
Organism source	In-house culture	
Organism age	<24-hour old neonates	
Test type	Static	
Test duration	48 hours	
Test vessel	250-mL glass beaker	
Test volume	200 mL	
Test solution depth	6 cm	
Test concentrations	Five concentrations, plus laboratory control	
Test replicates	1 per treatment	
Number of organisms	10 per replicate	
Control/dilution water	Moderately-hard reconstituted water + 2.5 µg/L Se	
Test solution renewal	None	
Test temperature	20 ± 2°C	
Feeding	None	
Light intensity	400 to 800 lux	
Photoperiod	16 hours light / 8 hours dark	
Aeration	None	
Test measurements	Temperature, dissolved oxygen and pH measured daily; salinity, hardness and alkalinity measured in the undiluted sample at test initiation; conductivity measured at test initiation and termination; survival checked daily	
Test protocol	Environment Canada (2000), EPS 1/RM/14, with 2016 amendments	
Statistical software	CETIS Version 1.9.4	
Test endpoint	Survival (48-hour LC50)	
Test acceptability criterion for controls	Survival ≥90%	
Reference toxicant	Sodium chloride (NaCl)	

Table 1.Summary of test conditions: 48-h Daphnia magna LC50 test.

APPENDIX B – Toxicity test data

Daphnia magna Summary Sheet

	Daphnia magna	Summary Sheet
Client: Work Order No.:	ALS ENVIRONMENTAL	Start Date/Time: <u>AVの 15 + 2 01 역 @ 13 00h</u> Test Species: Daphnia magna
VUR Order No	1917UL1 v~	Set up by:
Samala informatio		Test Velidity Criteries
Sample Information Sample ID: Sample Date: Date Received: Sample Volume:	12328091-1 EQ PONO AUG 12, 2019 AUG 14, 2019 2x 12	Test Validity Criteria: ≥ 90% mean control survival and/or mobility and ≤2 daphnids exibit immobility and/or mortality in any single control replicate. WQ Ranges: T (°C) = 20 ± 2; DO (mg/L) = 3.6 to 9.4; pH = 6 to 8.5

Test Organism Information:

Broodstock No.:	073119B
Age of young (Day 0):	<24 h
Avg No. young per brood in previous 7 d:	29
Mortality (%) in previous 7 d:	0
Days to first brood:	9

NaCl Reference Toxicant Results:

Reference Toxicant ID:	DWDC36	
Stock Solution ID:	181000	
Date Initiated:	AV0 7, 2019	
48-h LC50 (95% CL):	1.3 (6.4 - 8.3)	g/LNaCL

Reference Toxicant Mean and Historical	Range:	5.4(3.7	-7.8)	g/L NaCL
Reference Toxicant CV (%):	19			

Test Results:	The 48h 1050 10 C	stimated to be >1009. (VN)
Reviewed by:	A	Date reviewed: <u>Aug 23/19</u>

Version 1.5; Issued Sep. 30, 2015

Nautilus Environmental Company Inc.

Freshwater Acute 48 Hour Toxicity Test Data Sheet

				EQIPUND			No	Organis		ER #:		nnmi			:
Work Order No.:	1911	<u>- 10 C</u>	1				NO. C				D.mag				 .
			. 1					100		up by:		1			
- · · · · · · · · · · · ·	h-		1.1	2 . 2				,						,3,	2
Thermometer: (<u>EP</u>	<u>′'?</u> ; pH	meter/	probe:	3/0	DO me	ter/prol	be:	<u>. . (</u>	<u>_</u>	Cond./	Salinity	meter	/probe:		<u>.</u>
Concentration	N	umber	of	Nia	Ter	nperat	ure	Disso	lved o	xygen		,pH		Condu	ctivity
3(Organ	isms	No. Immobilized	1	(°C)			(mg/L)					. (µS/	cm)
9.(V/V)	Rep			i									1		
		24	48	48 C	0		48	0	24	48	0;:		5748	0	48
ARL	<u>A</u>	10	01		19.0	19,0	1 9.0	9.2	51	8.1	7.2		75	340	343
	B		<u> </u>				A TRADICAL				1000 (1000) 				NAR CONT
f	<u> </u>		<u> </u>												
6.25	D	10	. W			10 0	16 0		03	ΟIJ	1.2	76	22	390	390
0.27	A	1.		0	14.0	Margine Margine	11.0	9.2	3.4 1997 Augusta	<u>ð.</u> 1	14.)	16.7	<u>11</u>	310	370
	В			1			and and a second second second second second second second second second second second second second second se	And Andrewson							
· · · · · · · · · · · · · · · · · · ·	C D														
12.5	A	10	10	0	100	10 ()	10 A	9.2	8.4	46	7.4	<u>م</u> ا	79	449	449
16.7	B	10			1-1. V		1.0	1		0.0					
	C				Card Self										
··· ··· ··· ··· ···	D	<u> </u>	<u>†</u>										No stanta e de		
25	A	10	10	0	19.0	1a 0	190	91	84	83	7.5	7.6	8.0	547	545
	B		10	· · · · ·									1000000		
·	C					2503	SPIGE 1								
	D	<u> </u>	1												Section in the
50	Α	10	10	0	19.0	19.0	19.0	9.1	8.4	88	7.5	7,7	8.2	741	730
	В														Altone St.
	e C														4.00 Gr/
	<u>, , D</u>				ASUNTAR A										
100	<u>;</u> A	10	10	0	19.0	19.0	19.0	8:6	8.3	8.5	7.5	7.7	8.0	1134	1655
	В	<u> </u>			1912										
	C								¥.		CONCESS	CON MARK			
	D		:												
Technician In	itials	<u>ST</u>	m	m	151	SŢ.	m	<u>ST</u>	151	K	JT	87	pri	L ST_	R
					_				Initial W	Q	,	djustm	ent	Adjust	ted WQ
	Hard	ness*	<u> </u>	Alkalinity*		Temp	(°C)	_	19.0				<u>.</u>	<u> </u>	
Concentration			g/L as C		-	DO (n	ng/L)		86			_	<u>.</u>		
Control (MHW)		0	· · ·	<u> </u>	-	рН			7.5			;			
Highest conc.	39	<u> 50 -</u>		310	-		(µS/cm		<u>1134</u>	÷ .				<u> </u>	
Hardness adjusted	Ļ <u>.</u>		I			Salinit	y (ppt)	().6						
Comments:	4 - 1 6 - 1 6 - 1	:						Mortalit	ty: Hea	rtbeat	check	ed un	der mi	croscope	e_ <i>1</i> ¢ŕ_
Sample Descripti				corantes		an	<u>d,</u>	NG Y	art	cΛl	ates	1 N	0 00	lar	2
Batch#: 013116	16	7-d pr	evious #	young/brood:	29	Previo	ous 7-d	Mortalit	y (%): <u>-</u>		0	_ Day c	of 1st Br	ood:	1
Reviewed by:		:	A			D	ate rev	viewed	:			tug	13/19)	
		:										0	1		
Version 1.9; Issue	d July 19, 2	017											Nautilus	Environmer	ntal Compa
													-		

APPENDIX C – Chain-of-custody form

Subcontract Request Form

Subcontract To:

NAUTILUS ENVIRONMENTAL

8664 COMMERCE COURT BURNABY,BC V5A 4N7

	S requires QC data to	report and invoice: PO# <u>L232</u> be provided with your final result pple(s) in 2 Container(s)	1	
SAMPLE NUMBER	ANALYTI	CAL REQUIRED	DATE SAMPLED	Priority Flag
L2328091-1 EQ		1agna LC50 (48 Hour) - Nautilus (DAP R-NL 1)	8/12/2019 PHNIA- 8/23/2019	
Subcontract Info Analysis and rep	o Contact: porting info contact:	Brittany Puckey (604) 253-4188 Amber Springer, B.Sc 8081 LOUGHEED HWY SUITE 100 BURNABY,BC V5A 1W9	8 *NEW* Reporting Contacts: 1.Account Manager Listed Below 2.ALSEVDataSuble@ALSGlobal.cor 3.ALSE.CASDG@ALSGlobal.com (E	
Please email c	onfirmation of recei	Phone: (604) 253-4188	Email: amber.springer@als r@alsglobal.com	global.com
Shipped By:	me	Date Shipped:	Aug 14 2	019
Received By:	Jeslin Wizeya	Date Received:	Aug 14/19 @ 1445	izis h
Verified By:		Date Verified:		
Sample Integrit	y Issues: <u></u> ११व	Temperature:	6.6-8.2°C	

WO# 191561

END OF REPORT

Chain of Custody (COC) / Analytical **Request Form**

Canada Toll Free: 1 800 668 9878

COC Number: 17 -

Page of

	www.alsglobal.com		· ·	-	- L - N							Į										
Report To	Contact and company name below will app	pear on the final report		Report Format	/ Distribution		1	Select Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply)														
Company:	Regional District of Kitimat-Stikine		Select Report F	ormat 🖸 PDF (jexcel 🗆 Eda	D (DIGITAL)	1	Regular [R] Standard TAT if received by 3 pm - business days - no surcharges apply														
Contact:	Chris Kerr		Quality Control	(QC) Report with R	eport 🗹 YES	D NO		4 day	4 day [P4-20%] 🗆 🙀 1 Busin				siness	day [E	1 - 100							
Phone:	250-641-4141		Compare Results to Criteria on Report - provide details below if box checked			CRIT D SE					me Day, Weekend or Statutory holiday [E2 -200%											
	Company address below will appear on the fir	nal report	Select Distribution: 🖸 EMAIL 🗋 MAIL 🗖 FAX			(Bush	2 day	(P2-50)%] 🗆		ð	(Labo	ratory	openii	ng fees	es may apply)]						
Street:	4545 Lazelle Avenue		Email 1 or Fax rtooms@rdks.bc.ca				Date and	Time R	equired fo	orall E8	PTAT	s: ,										
City/Province:	Terrace/BC		Email 2	ckerr@rdks.bc.ca			For tes	ts that car	not be	performed	accordin	ıg to the	service	level sele	ected, you	will be c	ontacted					
Postal Code:	V8G4E1		Email 3	eblaney@rdks.bc.	ca								Ana	lysis F	Reques	t						
Invoice To	Same as Report To 🛛 🖾 YES			Invoice Dis	stribution				Indicate	e Filtered (F), Pres	erved (P) or Fill	tered an	d Preserv	red (F/P)	below				tail	
	Copy of Invoice with Report DI YES	ом с Ом с	Select Invoice [Distribution: 🗹 EM/		FAX				T		Γ	ΓT				T	[]			r detai	
Company:	Regional District of Kitimat-Stikine		Email 1 or Fax	anne-maries@rdk	s.bc.ca											-					further	
Contact:	Roger Tooms		Email 2	ckerr@rdks.bc.ca;	eblaney@rdks.t	oc.ca	1														\$	
	Project Information		Qil	l and Gas Require	d Fields (client (use)	2														rovide	ļ
ALS Account #	# / Quote #:		AFE/Cost Center:		PO#		magna														Δ. [.	,]
Job #:	Hazelton EQ LC50		Major/Minor Code:		Routing Code:																(please	S
PO / AFE:			Requisitioner:				Daphnia														Ē	VINE.
LSD:			Location:				LC50 D						ļ,							Я	ä op	NTA
ALS Lab Wor	rk Order # (lab use only):		ALS Contact:	Amber Springer	Sampler:	Chris Kerr	toxicity LC													δ	is hazar	NUMBER OF CONTAINERS
ALS Sample #	Sample Identification	and/or Coordinates		Date .	Time		ê Ê													SAMPLES	ple	BEF
(lab use only)	(This description will	appear on the report)		(dd-mmm-yy)	(hb:mm)	Sample Type	Acute										1 5			MAN I	Sample	NON I
	EQ Pond			12/8/19	9:30	Effluent	R										+			<u> </u>		2
		•			,							<u> </u>				-	+		-+		-+	-
											1			<u> </u>			+!				-	
									_			<u> </u>		_	_				-+			_
															_		<u> </u>					
													1				<u> </u>					
																			1			
			-							- T			T				_ · · · ·					
			• .		· · · ·		+				+			-+			+					
					· · ·	<u> </u>		\vdash		-		<u> </u>	┝╼╼╉				+'		+	-+-		
	· · · · · · · · · · · · · · · · · · ·									-	-			-+			+'			-		
		·		· · ·		ļ						_	ļ				_ '		\rightarrow			
Drinking	Water (DW) Samples [†] (client use)	Special Instructions / Sp			king on the drop-	down list below				SA	MPLE			-	RECEIV) use c	only)				
	en from a Regulated DW System?	Deficie Calumbia America		tronic COC only)			Froze		!		_		Observa		Ye		님		No		Ц	! !
		British Columbia Approv	ed and working	Water Quality Guid	telines (MAY, 20	115)			· ·	e Cube:	з. <u>Ц</u>	Cust	ody sea	al intac	t Ye	es			No			1
							Cooli	ng Initia														
	human consumption/ use?								_	OLER TE	MPERA	TURES	°C	<u> </u> .		FINAL		R TEMP	ERATUR	nes •C		
⊡ Ya	ES 🖸 NQ				<u> </u>		10)	8		-											
Rejeased by-	SHIPMENT RELEASE (client use			INITIAL SHIPMEN		lab use only)	1=					FINAL	_		RECEP	TION (lab us	e only)			
	Erec HUCI				Date:	•	Time		(eceiv	red by:	1.1			Date:	h.h.	11	ζ		- 1	70	ξu	<
	KPAGE FOR ALS LOCATIONS AND SAMPLIN		· / ··································	WHI	L	Y COPY YEL	LÖŴ-	CLIENT	COPY	<u></u>	ልፈ				The part	1.				s	EPT 2017	FRONT

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

REGIONAL DISTRICT OF KITIMAT-STIKINE ATTN: Chris Kerr # 300 - 4545 Lazelle Avenue Terrace BC V8G 4E1 Date Received:17-SEP-19Report Date:04-OCT-19 11:50 (MT)Version:FINAL

Client Phone: 250-615-6100

Certificate of Analysis

Lab Work Order #: L2349150

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED HAZELTON WMF LC-50 17-828814

amben Springer

Amber Springer, B.Sc Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample II Descriptio Sampled Dat Sampled Tim Client II	1 9 9		
Grouping	Analyte			

Reference Information

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

Chain of Custody Numbers:

17-828814

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Quality Control Report

		Workorder	L234915	0	Report Date:	04-OCT-19	Pag	ge 1 of 2	
Client:	REGIONAL DISTRICT	OF KITIMAT-STIK	INE						
	# 300 - 4545 Lazelle A	venue							
	Terrace BC V8G 4E1								
Contact:	Chris Kerr								
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	

Quality Control Report

Workorder: L2349150

Report Date: 04-OCT-19

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Acute Toxicity Test Results

Sample L2349150-1 WETLAND #4, collected September 16, 2019

Final Report

October 3, 2019

Submitted to: **ALS Environmental** Burnaby, BC

8664 Commerce Court, Burnaby, BC V5A 4N7

SAMPLE INFORMATION

		Dates		Dessint
Sample ID	Collected	Received	Daphnia magna test initiation	Receipt temperature
L2349150-1 WETLAND #4	16-Sep-19 at N/A	18-Sep-19 at 0956h	19-Sep-19 at 1345h	2.1°C

N/A = Not Available

TEST

• Daphnia magna 48-h LC50 test

RESULTS

Toxicity test results

Sample ID	LC50 (% v/v)
L2349150-1 WETLAND #4	>100

LC = Lethal Concentration

QA/QC

QA/QC summary	Daphnia magna
Reference toxicant LC50 (95% CL)	5.9 (4.8 – 7.3) g/L NaCl ¹
Reference toxicant historical mean (2 SD range)	5.5 (3.7 – 8.4) g/L NaCl
Reference toxicant CV	21%
Organism health history	Acceptable
Protocol deviations	None
Water quality range deviations	None
Control performance	Acceptable
Test performance	Valid

¹ Test date: September 18 2019, LC = Lethal Concentration, SD = Standard Deviation, CL = Confidence Limits, CV = Coefficient of Variation

WO#191813

Report By: Yvonne Lam, B.Sc. Laboratory Biologist

antonn

Reviewed By: Edmund Canaria, R.P. Bio Senior Analyst

This report has been prepared by Nautilus Environmental Company Inc. based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party. The results presented here relate only to the samples tested.

APPENDIX A – Summary of test conditions

•	
Test species	Daphnia magna
Organism source	In-house culture
Organism age	<24-hour old neonates
Test type	Static
Test duration	48 hours
Test vessel	250-mL glass beaker
Test volume	200 mL
Test solution depth	6 cm
Test concentrations	Five concentrations, plus laboratory control
Test replicates	1 per treatment
Number of organisms	10 per replicate
Control/dilution water	Moderately-hard reconstituted water + 2.5 µg/L Se
Test solution renewal	None
Test temperature	20 ± 2°C
Feeding	None
Light intensity	400 to 800 lux
Photoperiod	16 hours light / 8 hours dark
Aeration	None
Test measurements	Temperature, dissolved oxygen and pH measured daily; salinity, hardness and alkalinity measured in the undiluted sample at test initiation; conductivity measured at test initiation and termination; survival checked daily
Test protocol	Environment Canada (2000), EPS 1/RM/14, with 2016 amendments
Statistical software	CETIS Version 1.9.4
Test endpoint	Survival (48-hour LC50)
Test acceptability criterion for controls	Survival ≥90%
Reference toxicant	Sodium chloride (NaCl)

Table 1.Summary of test conditions: 48-h Daphnia magna LC50 test.

APPENDIX B – Toxicity test data

Daphnia magna Summary Sheet

Client: <u>A</u> Work Order No.:

Sample Information:

Sample ID:

Sample Date:

Date Received:

Sample Volume:

ALS ENVIRONMUNTA]

12349150-1 WEILCINDS A4

19/813

Sept 16,2019

2 × 102

Sept 18, 2019

Test Species: <u>Daphnia magna</u> Set up by: <u>MLf</u>

Test Validity Criteria:

≥ 90% mean control survival and/or mobility and ≤2 daphnids exibit immobility and/or mortality in any single control replicate.

WQ Ranges:

T (°C) = 20 \pm 2; DO (mg/L) = 3.6 to 9.4; pH = 6 to 8.5

Test Organism Information:

Broodstock No.:	090419A TB
Age of young (Day 0):	<24 h
Avg No. young per brood in previous 7 d:	<u>רו</u>
Mortality (%) in previous 7 d:	0
Days to first brood:	9

NaCl Reference Toxicant Results:

Reference Toxicant ID:	DMDC38	
Stock Solution ID:	is Noit	
Date Initiated:	sept 18, 2019	
48-h LC50 (95% CL):	5.9(48-7.3)	g/LNaCL

Reference Toxicant Mean and Historical Range: <u>うら(3.7- %・</u>4) g/L NaCL Reference Toxicant CV (%): 2_)

Test Results:	the	45h	150	13	estimated	tu	be	71009. (VN)	
---------------	-----	-----	-----	----	-----------	----	----	-------------	--

Reviewed by:

Ul

Oct: 3, 2019 Date reviewed:

Version 1.5; Issued Sep. 30, 2015

Nautilus Environmental Company Inc.

					reshw				oot				:		
Client: Sample ID: Work Order No.:			0/W 0-1	48 Hour T Lenta L (K. wetlands		-		Stari Organis		lume:	10/2	200mL	//9 (2 134	45-h
Thermometer:(<u>5 k</u>	<u>#5</u> рН	meter/p	orobe: _	3/3	DO me	ter/prol	be:	<u>3 / 3</u>		up by: Cond./			/probe	<u> </u>	3
Concentration げ.(v/v)	Live		Number of Live Organisms Rep		Ter	Temperature (°C)		Dissolved oxygen (mg/L)				pН		Condu (µS/	ictivity (cm)
)		24	48	48	0	24	48	0	24	48	0	24	48	0	48
CTIEL	А	0j	10	0	20.0	19.0	19-0	8.9	8.4	85	7.6	7.5	7.7	337	351

	в									1					
	С												:		
	D														
6.25	Α	10	10	0	19.0	19.0	19.0	5-9	8.4	85	7.5	75	7.8	341	379
	В														
	С														
	D														
12.5	А	10	10	0	19.0	19.0	19.0	5.9	8.4	85	7.5	7.5	7.9	404	408
	В														
	С			n											
	D														
25	А	(0	10	0	14.0	12.0	19.0	8.8	8.4	85	7.5	7.5	7.9	471	472
	В														
	С	[
	D	1			1				:			1	1		
50	Α	10	10	6	19.0	19.0	19.0	85	8.3	8.6	7.5	7.6	8.1	607	603
	В							- 		v					
	С											1			
	D					1									
100	Α	(0	10	0	20.C	12.0	19.0	7.6	8.3	85	7.6	7.9	8.2	880	864
	В				1			-							
	С					1						1		1	
	D	1	1			1						1	1	T	
Technician Ir	itials	int	50	30	INF	mit	50	MIF	ME	50	Mif	mit	50	BUF	50

	Hardness*	Alkalinity*
Concentration	*(mg/	L as CaCo3)
Control (MHW)	100	76
Highest conc.	370	300
Hardness adjusted		

	Initial WQ	Adjustment	Adjusted WQ
Temp (°C)	20.0		
DO (mg/L)	7.6	:	
рН	7.6		
Cond (µS/cm)	880		
Salinity (ppt)	0.4		

Comments:		Mortality: H	leartbeat checked under micro	oscope Notraid
Sample Description:	clear columness lian	Ad, some brain	particulates ne	rclan
Batch#: 040419A+B	_ 7-d previous # young/brood;č	Previous 7-d Mortality (%): Day of 1st Broom	d:
Reviewed by:		Date reviewed:	Oct-3, 3119	

Version 1.9; Issued July 19, 2017

Nautilus Environmental Company Inc.

APPENDIX C – Chain-of-custody form

Subcontract Request Form

Subcontract To:

NAUTILUS ENVIRONMENTAL

8664 COMMERCE COURT BURNABY,BC V5A 4N7

NOTES:	Please reference on final report and invoice: PO# 1.2349	150	
	ALS requires QC data to be provided with your final results.		
		:	

Please see enclosed 1 sample(s) in 2 Container(s)

SAMPLE NUMBER				DATE SA	MPLED	Priority
	ANALYTI	CAL REQU	IRED		DUE DATE	Flag
L2349150-1 WETLAND #4	1			9/16/20	19	
	Daphnia N LC50-48H		(48 Hour) - Nautilus (DAP)	HNIA-		
Subcontract Info Contact:		Brittany	Puckey (604) 253-4188	1		
Analysis and reporting info	o contact:	8081 LC SUITE 1	Springer, B.Sc DUGHEED HWY 00 SY,BC V5A 1W9			
		Phone:	(604) 253-4188	Email:ambo	er.springer@als	global.com
Please email confirmati	ion of recei	pt to:	amber.springer	@alsglobal.c	2	6
Shipped By:	Paul-		Date Shipped:	Cup	7 18/20	17)
Received By: Tyrone	Homil	than	Date Received:	Sept	18/170	9:56
Verified By:			Date Verified:		-	
			Temperature:	2.1°C 2×106		
Sample Integrity Issues:				<u> </u>		

191813

NEW Reporting Contacts: 1.Account Manager Listed Below 2.ALSEVDataSublet@ALSGlobal.com (PDF / EXCEL) 3.ALSE.CASDG@ALSGlobal.com (EDD/Database Formats)

Kitimat

END OF REPORT

		ody (COC) / quest Form								Ì	coc	Numl	ber:	17 -	82	28	81	4			
(ALS)	Environmental	Canada Tal	E	20 0970	l.	L2349150	COF	С						Pag	je	° O	f				
· .	www.alsolobal.com	Canada To	Free: 1 800 66	00 9070	I				۰.		ļ										
Report To	Contact and company name below will appea	on the final report		Report Format	Distribution		· · · · ·	- Selec	t Servi	ice Level	ستگر • Below	Conta	ct you	r AM to confirm all E&P TATs (surcharges may apply)							
Company:	Pin Dios at Kom	Mt - Stillie	Select Report Fo			EDD (DIGITAL)	1		ular [R		<u> </u>	andard TAT if received by 3 pm - business days - no surcharges apply									
Contact:	CutRis LERR		Quality Control (QC) Report with Rep] NO	ŝ	4 day	P4-20												
Phone:	250-615-6100			ults to Criteria on Report -		if box checked	¹ / ₂ ¹ / ₂									2.200%					
	Company address below will appear on the final	report	Select Distributio		MAIL []]		Brain Buain	Same Day, weekend or Statutory holiday [E2 -200%]									. 20075 .				
Street:	4545 LAZELLE A	re -	Email 1 or Fax	SPEOUSE	PROUS . D	c.ca	Date and Time Required for all E&P TATs: dd-mmm-yy hh:mm										<u> </u>				
City/Province:	TENRACE, B.C.								tests that Can not be performed according to the service level selected, you will be contacted.												
Postal Code:	V86-4E1		Email 3	ellaney.	Ordus.	bc.ca		Analysis Request													
Invoice To	Same as Report To	NO		Invoice Di	stribution		Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below														
	Copy of Invoice with Report YES		Select Invoice D	istribution:		FAX	12		. 1		Γ_	T	1					<u> </u>		15	(suo
Company:	REG DIST of Kit.	MAT - Stilling	Email 1 or Fax 🖌	WINE-MARIE	serder.	beca	1匝	•	8							-		-		HOL	- E
Contact:	5-82 STEUR AROU	re		reldig.bc			4Z	6	River V											Ī	ta .
	Project Information		(Dil and Gas Require	d Fields (client u	ise)	≏ן	3	2	ľ				1			-				ial I
ALS Account #	A	· .	AFE/Cost Center:		PO#										.					N	ě
Job #:	HAZECTON WMF	12-50	Major/Minor Code:	-	Routing Code:		18 I	R	ž											_	8
PO/AFE:			Requisitioner:		•		Ь	<u>_</u>]	-S	•					4					<u>N</u>	ļ
LSD:			Location:					νų.	T.											"	ZAF
ALS Lab Wo	ork Order # (lab use only):		ALS Contact:		Sampler:	-	NUMBER	12 1	2											AMPI	SUSPECTED HAZARD (see Special Instructions)
ALS Sample #	Sample Identification	and/or Coordinates		Date	Time	Sample Type	131	2					1							<	E E
(lab use only)	(This description will a			(dd-mmm-yy)	(hb:mm)	Sample Type	Ž	X						Ì						S I	SUS
	WETLAND #4			16/09/19	1:00	WATER	2	4												[
																		\top	<u> </u>		1
																	·	+		<u> </u>	-
					· ·		┢─┤		+								_	+	1	+	
		· · · · ·			+	+					+			+-				+-		 	+
	· · · · · · · · · · · · · · · · · · ·			-							 					\rightarrow	\rightarrow	+	_ i	──	—
		-									_		[<u> </u>		<u> </u>	
		· .		· · · ·																	
· · · ·	- · · ·	··· · · ·				-				_									1		
	<u> </u>		-													1					1
					1	–										\neg	+	+		t	+
÷ *		·					+ •											+-	+	<u> </u>	+
·····	<u> </u>	<u></u>			+	·· · · · · · · · · · · · · · · · · · 					+					+	+			 	1
	<u> </u>		<u> </u>	<u> </u>			╁┯╼┛	<u>. </u>											<u> </u>		_ i
Drinki	ng Water (DW) Samples ¹ (client use)	Specity Criteria to (ele	add on report by clic ctronic COC only)	king on the drop-d	lown list below	Frozei		- 1	-	AMPLE	SIF O			_	VED (8 Yes		oniyj	No			
Are samples take	an from a Regulated DW System?					ice Pa			 xe Cubes						Yes	ö		No		۲ ۵	
	Tes 🗹 NO						1	ng Initiat		7		000000	.,		•	100	4		110		
Are samples for	ples for human consumption/ use?								L	DOLER TE	MPERATI	JRES °C	;				NAL CO	OLER T	EMPERATI	URES °C	
	YES NO						9	7								1	1				
·	SHIPMENT RELEASE (client use)		T RECEPTION (ab use only)						FINAL	SHIP		RECE	PTIO	N (lab i	use or	 1/v)				
Released by	Dat	6/19 3:30	Received by:	1.	Date:		Turre: S: Se	R	Receive	ed by:	<u>.</u>	,	_	Date:		<u></u>	- <u>1.40 (</u>	<u></u>	·· · /	Tîme:	 د .
	PAGE FOR ALS LOCATIONS AND SAMPLING INFO	6/19 3:50	Chris .	Kosins	TE-LABORATORY						\mathcal{O}	$\underline{\mathbb{N}}$				24	<u> </u>	1		Time: 212	
THEFT IN THE OWNER	A THE FOR THE LOOP TO NO AND SAMPLING INFO	ORMATION		vvrii	CADORATORY	TELLU	rv - CLIE	NT COP	• ¥							9	-	_		JUNE	IE 2018 FRONT

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

_