QUEENSWAY SEWER 2022 ANNUAL REPORT

2022 Annual Report

Prepared for:

British Columbia Ministry of Environment & Climate Change Strategy EnvAuthorizationsReporting@gov.bc.ca

Prepared by:

Regional District of Kitimat-Stikine Suite 300 - 4545 Lazelle Avenue Terrace, BC V8G 4E1

[This Page Left Intentionally Blank]

Regional District of **Kitimat-Stikine**

Executive Summary

Queensway Sewer (the Facility) is a Class 1 municipal wastewater treatment facility producing a Class 3 effluent. The facility is located approximately 3 kilometres down Queensway Drive, south of the City of Terrace and provides secondary treatment of septic effluent from residential and commercial sources in Electoral Area E from Queensway, Churchill, and the Thornhill Commercial Core areas. The facilities authorised works include a two-cell aerated lagoon system, twin exfiltration basins, a flow measurement facility, and an outfall. The facility is authorised under permit number 12645 (the Authorisation) through the Ministry of Environment and Climate Change Canada (ENV) and includes authorisation to discharge to ground through the twin exfiltration beds (site reference discharge E220346), and to the Skeena River side channel via the outfall during flood stages of the Skeena River (site reference discharge E220347).

In October 2022 the RDKS obtained an amendment to the Authorisation to change BOD₅ to C-BOD₅. The amendment was requested to align the Authorisation with the Municipal Wastewater Regulation (MWR), which defines BOD₅ as carbonaceous 5-day biochemical demand. The amendment was granted on October 31, 2022 and replaces the terms 5-day biochemical oxygen demand (BOD₅) with 5-day carbonaceous biochemical oxygen demand (C-BOD₅) in the authorisation.

The quality of effluent discharged to the exfiltration beds was monitored monthly under the effluent monitoring program. Effluent monitoring was not completed in June during flood conditions of the Skeena River, and a non-compliance report was submitted to ENV for this incident. The Authorisation includes limits for C-BOD5, and TSS of 45mg/L and 60 mg/L respectively. During 2022 the C-BOD₅ and TSS concentrations were below the limits of the Authorisation. In 2022 discharge was limited to the exfiltration beds, and the Outfall Pre-Discharge Monitoring Program, and Receiving Environment Monitoring Program, were not completed.

During the first half of 2022, the concentration of Nitrogen at the Facility had been measured through Total Kjeldahl Nitrogen (TKN) analysis. TKN does not include nitrites or nitrates, the resulting nitrogen components of the nitrification of ammonia, and underrepresents true Total Nitrogen (TN) concentrations at the facility because it omits the nitrogen concentration of all ammonia that has completed the nitrification cycle in the aeration lagoons. TN analysis was added to the monthly effluent monitoring analysis in July 2022.

Discharge measurements for 2022 were based on influent flow rate, and precipitation volumes observed at the Northwest Regional Airport. The total discharge for 2022 was estimated at 99,754.5 m³, based on an average discharge rate of 273.3 m³ per day, which is below the authorised annual average discharge limit of 800 m³ per day.

[This Page Left Intentionally Blank]

Contents

E	Executive Summaryi						
1	Introduction1						
	1.1	Regu	ılatory Framework1				
2	Disc	harge	e Operations4				
	2.1	Mor	itoring Methodology4				
	2.2	Non	-Compliance4				
3	Data	and	Analysis				
	3.1	Influ	ent Flow Rate and Discharge Volumes5				
	3.2	Efflu	ent Monitoring Data				
4	Clos	ure a	nd Recommendations9				
5	Refe	renc	es10				
A	ppendix	A	EOC Certifcation				
A	ppendix	В	Permit 1264512				
A	ppendix	C	Permit Amendment				
A	Appendix D		Non-Compliance Report14				
A	ppendix	E	Lab Reports				

[This Page Left Intentionally Blank]

1 Introduction

Queensway Sewer (the Facility) is a municipal wastewater treatment facility, located approximately 3 kilometres down Queensway Drive, south of the City of Terrace, located on Block A, District Lot 8098, Range 5 Land District, lying on the west side of the British Columbia Hydro and Power Authority Right of Way. The facility was commissioned in 1994, providing secondary treatment of septic effluent from residential and commercial sources in Electoral Area E from Queensway, Churchill, and the Thornhill Commercial Core areas. The facilities authorised works include a two-cell aerated lagoon system, twin exfiltration basins, a flow measurement facility, and an outfall, shown in Figure 1.

Figure 1: Queensway Sewer Facility, Orthoimagery Dated May 2019

1.1 Regulatory Framework

Wastewater Systems Effluent Regulation

The Wastewater Systems Effluent Regulation (WSER) regulates the discharge of effluent from wastewater systems in Canada that deposit a deleterious substance to water, or where the deposit of a deleterious substance may enter water frequented by fish. The WSER requires annual reporting of CBOD, and TSS averages, with limits of 25 mg/L for each.

Municipal Wastewater Regulation

Municipal effluent of wastewater treatment facilities is defined under the Municipal Wastewater Regulation (MWR) as Class A, Class B, or Class C, based on the treatment objectives. The Queensway Sewer produces a Class C effluent, meeting the criteria of secondary treatment for a lagoon system, with BOD₅ (defined in the MWR as the carbonaceous 5-day biochemical oxygen demand) of not more than 45 mg/L, and TSS of not more than 60 mg/L.

The Facility is a Class 1 Wastewater Treatment Facility, under the Environmental Operators Certification Program (EOCP), certificate No. 406 (Appendix A). Queensway Sewer has three operators certified at or above Wastewater Treatment Level 1.

Monitoring requirements for discharge to ground for Class C effluent are set under s.86 of the MWR and include twice a week monitoring of flow frequency, and monthly grab samples of C-BOD₅, and TSS. Data must be submitted to the director at minimum quarterly for a system with a maximum daily flow of 50m³ or greater. C-BOD₅ must be 45 mg/L or below, and TSS must be 60 mg/L (lagoon system) or below. There are no requirements under the MWR for Class C effluent facilities, to measure fecal coliforms, turbidity, or nitrogen.

Discharge Authorisation

The Permit for Queensway Sewer authorisation, permit number 12645 (the authorisation; Appendix B), through the Ministry of Environment and Climate Change Canada (ENV), and includes an authorisation to discharge to the ground, and an authorisation to discharge to the Skeena River side-channel during flood stages of the river. The average authorised rate of discharge is 800 m³ per day, and the maximum authorised rate of discharge is 1,500 m³ per day.

The monitoring requirements of the authorisation include those of s.86, which are obtained through a monthly grab sample of effluent from the outlet of the aerated lagoon (Site No. E220346), and monthly reporting of the grab sample data. The authorisation sets additional monthly monitoring parameters, shown in Effluent Monitoring Column of Table 1. If effluent is to be discharge to the Skeena River side-channel, pre-discharge monitoring of the Skeena River side-channel and monitoring of the receiving environment are required. Pre-discharge monitoring and receiving environment monitoring sample requirements are also shown in Table 1.

In October 2022 the RDKS obtained an amendment to the authorisation to change BOD₅ to C-BOD₅. The amendment was requested to align the Authorisation with the MWR, which defines BOD₅ as *carbonaceous 5-day biochemical demand*. The amendment was granted on October 31, 2022 (APPENDIX C) and replaces the terms 5-day biochemical oxygen demand (BOD₅) with 5-day carbonaceous biochemical oxygen demand (C-BOD₅).

This amendment aligns the Authorisation with the MWR by allowing the RDKS to measure compliance with the authorisation using C-BOD₅ instead of BOD₅, the latter of which had caused non-compliance

Regional District of **Kitimat-Stikine**

events on a seasonal basis despite the facility meeting the regulatory limits of the MWR for secondary treatment lagoons.

Parameter	Sample Type	Effluent Monitoring	Outfall Pre-Discharge Monitoring	Receiving Environment Monitoring
Influent Flow Rate (m3/d), continuous measurement	Field	Monthly	NA	NA
Side-Channel Flow Rate	Field	NA	Twice, minimum of one week apart in typical non- flood low-flow conditions	Weekly during outfall discharge and for one month after outfall discharge
Temperature (°C)	Field	Monthly	Twice, minimum of one week apart in typical non- flood low-flow conditions	Weekly for one month after outfall discharge
Dissolved O_2 (mg/L)	Field	Monthly	Twice, minimum of one week apart in typical non- flood low-flow conditions	Weekly for one month after outfall discharge
рН	Field	Monthly	Twice, minimum of one week apart in typical non- flood low-flow conditions	Weekly for one month after outfall discharge
Total Ammonia (mg/L)	Field	Monthly	Twice, minimum of one week apart in typical non- flood low-flow conditions	Weekly for one month after outfall discharge
C-BOD₅ (mg/L)	Grab	Monthly	NA	NA
TSS (mg/L)	Grab	Monthly	NA	NA
Total Phosphorus (mg/L)	Grab	Monthly	NA	NA
Total Nitrogen (mg/L)	Grab	Monthly	Twice, minimum of one week apart in typical non- flood low-flow conditions	Sample if DO <2.0 mg/L or NH3 > 2 mg/L
Nitrate/Nitrite (mg/L)	Grab	NA	Twice, minimum of one week apart in typical non- flood low-flow conditions	Sample if DO <2.0 mg/L or NH3 > 2 mg/L
Fecal Coliform (MPN/100mL)	Grab	NA	Twice, minimum of one week apart in typical non- flood low-flow conditions	Sample if DO <2.0 mg/L or NH3 > 2 mg/L
Fecal Streptococci (MPN/100mL)	Grab	NA	Twice, minimum of one week apart in typical non- flood low-flow conditions	Sample if DO <2.0 mg/L or NH3 > 2 mg/L

Table 1 Monitoring Programs and Program Sample Requirements for Queensway Sewer Authorisation

2 Discharge Operations

During 2022 effluent monitoring requirements were met for each month, with the exception of June when high water flood conditions of the Skeena River prevented RDKS staff from safely accessing the facility. Discharge of effluent during the year was restricted to the exfiltration lagoons. Pre-discharge monitoring was not completed in 2022 and no discharge of effluent through the outfall to the Skeena River side-channel occurred. The works were inspected regularly during the monthly effluent monitoring sample events.

2.1 Monitoring Methodology

Effluent monitoring was carried out by RDKS Works & Services EOCP wastewater technicians, following the British Columbia Field Sampling Manual for Water and Wastewater Sampling. Samples were collected in laboratory supplied bottles by collecting effluent from the weir outfall. Samples were then transported in coolers with ice to the laboratory for analysis. The RDKS used Norlabs from January to May, and ALS Laboratories from August to December. No duplicate or quality assurance samples were collected during 2022.

Dissolved oxygen, pH, and Temperature were measured in the field using a YSI Pro Quatro. Ammonia was not measured in the field. pH measurements were not collected in the field from August to December but were included in the laboratory analysis. The YSI probes were calibrated in the office prior to use at each sampling event.

2.2 Non-Compliance

During the month of June 2022, the Skeena River experienced flooding with the closest hydrometric data station recording between 6.5 and 11 metres over the month, resulting in water levels 3.7 to 7.3 metres higher than the 2021 average of 3.7 metres. The flooding resulted in the access to the Queensway Sewer Facility being inundated by flows from the Skeena River. Due to the flooding of the access road, grab samples and monitoring were not completed during the month of June, with the exception of influent flow rate which is monitored continuously in the aerator building.

Figure 2: Side channel of the Skeena River that must be crossed to access the Facility, taken June 6, 2022

A non-compliance report was submitted on July 25, 2022 (APPENDIX D).

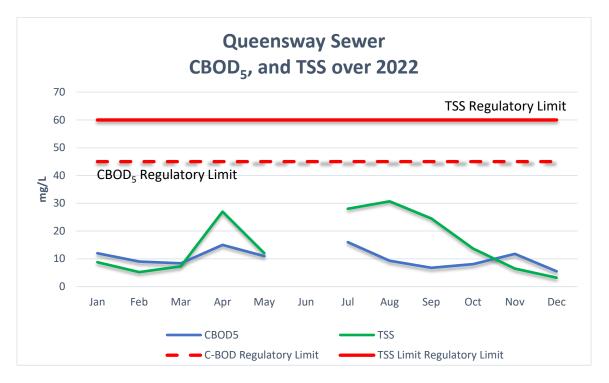
3 Data and Analysis

3.1 Influent Flow Rate and Discharge Volumes

The influent volumes are recorded continuously at the facility and are used to assess compliance with the average and maximum discharge rates. Discharge of effluent from the aeration ponds is assumed to equal influent flow rate plus precipitation over the lagoon area. Influent flow rates and monthly precipitation measurements from the Terrace Airport NAVCAN station are presented in Table 2. Volumes of precipitation are estimated from the area of the aeration lagoons which is approximately 12,700 m². Estimates do not include a factor for evaporation.

Date	Average Influent Flow Rate (m³/d)	Average Precip (mm/d)	Average Volume of Precip (m3/d)	Discharge Volume (m³/day)
January 24, 2022	274.28	5.2	66.4	340.7
February 14, 2022	319.61	5.4	68.9	388.5
March 15, 2022	247.61	4.4	55.7	303.3
April 20, 2022	238.8	4.1	52.6	291.4
May 8, 2022	201.9	2.2	27.6	229.5
June, 2022	242.29	3.6	45.2	287.5
July 18, 2022	223.72	2.4	30.5	254.2
August 15, 2022	180.7	2.1	27.0	207.7
September 26, 2022	175.31	2.4	30.1	205.4
October 14, 2022	166.75	6.1	77.8	244.5
November 14, 2022	202.28	5.5	70.1	272.4
December 12, 2022	223.25	2.5	31.6	254.8
Annual Average	224.7	3.8	48.6	273.3

Table 2: Average Influent, Precipitation, and Discharge Volumes by Month for 2022


The average discharge rate, calculated as average influent flow rate plus the average rate of precipitation, was 273.3 m³ per day. This was below the average authorised discharge rate of 800 m³ per day. Based on the low volumes of influent, precipitation, and discharge, it is unlikely that the maximum discharge rate of 800 m³ per day had been exceeded.

3.2 Effluent Monitoring Data

Effluent Monitoring data is presented in Table 3. Total Kjeldahl Nitrogen (TKN), defined as ammonia and organic nitrogen, was included in the analysis until May 2022. From July to December TKN was replaced with Total Nitrogen (TN), defined as TKN, plus nitrates and nitrites, to conform with the authorisation requirements of TN analysis in the monthly grab samples. In the nitrification cycle ammonia is reduced to nitrites, and then to nitrates. Because TKN does not include nitrites and nitrates, the historical data set underrepresents the true TN concentrations, as all ammonia that has undergone nitrification is omitted in the TKN concentration. Complete lab reports, including certificate of analysis and chain of custody are provided in Appendix E.

During 2022, C-BOD₅ and TSS were both below the regulatory limits of 45 mg/L and 60 mg/L respectively, except for June when a grab sample was not collected. C-BOD₅ and TSS concentrations are presented in Figure 3. Average C-BOD₅, and TSS were below the WSER regulatory limits of 25 mg/L.

The Authorisation requires the field collection ammonia and pH. Ammonia was analysed in the lab for each grab sample and was not collected in the field. pH was analysed in the lab for each grab sample except September, and pH was not collected in the field from August to December, resulting in no pH value for September.

C-BOD₅ exceeded BOD₅ in October and November. Collecting duplicate and Quality Assurance samples may help determine if this was a result of sample collection and handling in the field or was possibly a result of the oxidation of heterotrophic organisms from the nitrification inhibiter used at the lab (Muirhead, et al. 2006).

Table 3: Field and Grab Sample Data for Queensway Sewer

Date	TSS mg/L	CBOD₅ mg/L	BOD₅ mg/L	TP mg/L	TN mg/L	TKN mg/L	NH3 mg/L	SPC μS/cm	DO mg/L	pH Field	pH Lab	Temp °C Field
January 24, 2022	8.8	12	16	4.09	NC	33.5	29.7	293	5.7	7.47	7.1	0.6
February 14, 2022	5.2	9	11	3.26	NC	21.5	25.4	256	10.4	7.14	7.14	1.4
March 15, 2022	7.3	8.4	13	2.77	NC	25.4	25	281	10.8	7.66	7.3	4.6
April 20, 2022	27	15	36	3.53	NC	24.8	23	329	14.5	8.01	7.8	10.1
May 8, 2022	12	11	23	3.36	NC	28.3	23.5	373	11.3	7.93	7.4	14
June, 2022	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
July 18, 2022	28	16	92	3.34	NC	15.6	9.32	423	14.1	7.52	7.52	18.9
August 15, 2022	30.7	9.3	25.9	3.8	12.8	NC	11	NC	2.1	NC	8.32	19.7
September 26, 2022	24.5	6.8	16.9	4.47	29.4	NC	25.4	NC	0.9	NC	NC	13.9
October 14, 2022	13.7	8.1	7.8	4.71	31.8	NC	34.4	NC	1.8	NC	7.76	9.2
November 14, 2022	6.5	11.8	6.1	4.87	34.8	NC	33.5	NC	12.5	NC	7.95	3.7
December 12, 2022	3.2	5.5	5.6	5.63	39.6	NC	35.8	NC	6.9	NC	8.12	2
						•	•	•				

NC = Not Collected

TSS = Total Suspended Solids

CBOD₅ = 5-Day Carbonaceous Biochemical Oxygen Demand

15.17

10.26

BOD₅ = 5-Day Biochemical Oxygen Demand

Average

TP = Total Phosphorous

TN = Total Nitrogen TKN = Total Kjeldahl Nitrogen NH3 = Ammonia SPC = Specific Conductance DO = Dissolved Oxygen

[This Page Left Intentionally Blank]

4 Closure and Recommendations

Monthly effluent monitoring and effluent quality met the limits of the MWR and the Authorisation with C-BOD₅ below 45 mg/L, and TSS below 60 mg/L except for June, where grab samples were not obtained due to high flows. Annual averages of CBOD and TSS are below the WSER limit of 25 mg/L each.

The Facility was out of conformance with the authorisation for TN, pH and ammonia measurements for the monthly effluent monitoring program. The analysis of TN will be continued, and pH and ammonia r an amendment to the authorisation will be requested to change the sample type from field measurement to grab sample for pH and ammonia. Nitrites, nitrates, and TKN will be included in future analysis will help interpret the efficiency of the nitrification cycle. This may be especially helpful during the summer months when BOD₅ far exceeds CBOD₅, which implies a heavy nitrogen input into the lagoons during the summer. Looking at the nitrification cycle will also allow an interpretation of nitrification during the winter months, when temperatures are lower and biological activity is reduced.

Collection of duplicate samples, field blanks, and trip blanks as part of the monthly effluent monitoring program will be implemented to further align the sampling methodology with the BC Field Sampling Manual for Water and Wastewater sampling and may assist in determining the cause of CBOD₅ concentrations exceeding BOD₅ concentrations.

Document prepared by:

Dicole Lorais.

Nicole Lavoie, B.Tech, A.Ag. Environmental Services Coordinator Regional District of Kitimat-Stikine 300 – 4545 Lazelle Avenue Terrace, BC V8G 4E1 nlavoie@rdks.bc.ca **Document reviewed by:**

21-30m

Jobin Kunjumon, B.Tech, EOCP WD 1, WT 1 Operations Manager Regional District of Kitimat-Stikine 300 – 4545 Lazelle Avenue Terrace, BC V8G 4E1 jkunjumon@rdks.bc.ca

Regional District of **Kitimat-Stikine**

5 References

British Columbia Ministry of Environment and Climate Change Strategy. 2013. British Columbia Field Sampling Manual Part E: Water and Wastewater Sampling. https://www2.gov.bc.ca/assets/gov/environment/research-monitoring-andreporting/monitoring/emre/bc_field_sampling_manual_part_e.pdf.

Department of Fisheries and Oceans. 2015. *Wastewater Systems Effluent Regulations SOR/2012-139.* Canada.

- Muirhead, Woodie, Greg Farmer, Stacey Walker, Leonard Robb, Holly Elmendrof, Roger Matthews, Rick Butler, and Henryk, Henryk and Melcer. 2006. *Study of Raw Wastewater BOD5 and CBOD5 Relatoinship Yields Surprising Results.* Water Environment Foundation. https://d3pcsg2wjq9izr.cloudfront.net/files/5306/articles/8707/062.pdf.
- Province of British Columbia. 2012. *Municipal Wastewater Regulation B.C. Reg. 87/2012 (O.C. 230/2012)*. Province of British Columbia.

Appendix A EOC Certifcation

[This Page Left Intentionally Blank]

CERTIFICATE of CLASSIFICATION

Environmental Operators Certification Program

This is to certify that:

EOCP

Dated: July 19, 2022 At: Burnaby, BC Valid until: July 19, 2027

Queensway Wastewater Collection System

Facility No. 1511

has been classified as a

Class I WWC System

Che

CHAIR, BOARD of DIRECTORS

PRESIDENT and CEO

A society incorporated under the Society Act, S.B.C. S-28724

[This Page Left Intentionally Blank]

Appendix B Permit 12645

[This Page Left Intentionally Blank]

May 23, 2017

Tracking Number: 358897 Authorization Number: 12645

REGISTERED MAIL

Regional District of Kitimat-Stikine #300 – 4545 Lazelle Avenue Terrace, British Columbia V8G 4E1

Dear Permittee:

Enclosed is Amended Permit 12645 issued under the provisions of the *Environmental Management Act*. Your attention is respectfully directed to the terms and conditions outlined in the permit. An annual fee will be determined according to the Permit Fees Regulation.

This permit does not authorize entry upon, crossing over, or use for any purpose of private or Crown lands or works, unless and except as authorized by the owner of such lands or works. The responsibility for obtaining such authority rests with the permittee. This permit is issued pursuant to the provisions of the *Environmental Management Act* to ensure compliance with Section 120(3) of that statute, which makes it an offence to discharge waste, from a prescribed industry or activity, without proper authorization. It is also the responsibility of the permittee to ensure that all activities conducted under this authorization are carried out with regard to the rights of third parties, and comply with other applicable legislation that may be in force.

The Director may require the Permittee to repair, alter, remove, improve or add to existing works, or to construct new works, and to submit plans and specifications for works specified in this authorization.

The Director may require the Permittee to conduct monitoring, and may specify procedures for monitoring and analysis, and procedures or requirements respecting the handling, treatment, transportation, discharge or storage of waste. The Director may amend any requirements under this section, including requiring increased or decreased monitoring based on data submitted by the Permittee and any other data gathered in connection with this authorization.

This decision may be appealed to the Environmental Appeal Board in accordance with Part 8 of the *Environmental Management Act*. An appeal must be delivered within 30 days from the date that notice of this decision is given. For further information, please contact the Environmental Appeal Board at (250) 387-3464.

Ministry of Environment

Environmental Protection Division Regional Operations Branch Authorizations - North Mailing Address; # 325 - 1011 4th Avenue Prince George BC V2L 3H9 Telephone: (250) 565-6135 Facsimile: (250) 565-6629 Website: www.gov.bc.ca/env Administration of this permit will be carried out by staff from the Environmental Protection Division's Regional Operations Branch. Plans, data and reports pertinent to the permit are to be submitted by email or electronic transfer to the Director, designated Officer, or as further instructed.

Yours truly,

Daniel P. Bings for Director, *Environmental Management Act* Authorizations - North

Enclosure

cc: Environment Canada cc: Michael Gull at <u>mgull@rdks.bc.ca</u>

MINISTRY OF ENVIRONMENT

PERMIT

12645

Under the Provisions of the Environmental Management Act

Regional District of Kitimat-Stikine 4678 Queensway Drive Terrace, BC

is authorized to discharge effluent to the ground and to the Skeena River during flood stages only from a municipal sewage treatment facility located in Thornhill, near Terrace, British Columbia, subject to the requirements listed below. Contravention of any of these conditions is a violation of the *Environmental Management Act* and may lead to prosecution.

This Permit supersedes and replaces all previous versions of Permit 12645 issued under Section 14 of the *Environmental Management Act*.

Capitalized terms referred to in this authorization are defined in the attached Glossary. Other terms used in this authorization have the same meaning as those defined in the *Environmental Management Act* and applicable regulations.

Where this authorization provides that the Director may require an action to be carried out, the Permittee must carry out the action in accordance with the requirements of the Director.

1. AUTHORIZED DISCHARGES

1.1 Authorized Source

This section applies to the discharge of effluent to the exfiltration lagoon No. 3 and No. 4. The site reference number for this discharge is E220346.

- 1.1.1 The average authorized rate of discharge is 800 cubic metres per day.
- 1.1.2 The maximum authorized rate of discharge is 1,500 cubic metres per day.

Date issued: Date amended: (most recent) May 16, 1994 May 23, 2017

Daniel P. Bings for Director, *Environmental Management Act* Authorizations - North Permit Number: 12645

Page 1 of 13

- 1.1.3 The authorized discharge period is continuous.
- 1.1.4 The characteristics of the discharge must not exceed the following parameters:

Total suspended solids	60 mg/L
5 – Day biochemical oxygen demand	45 mg/L

- 1.1.5 The discharge is authorized from Authorized Works, which are a two-cell aerated lagoon system, twin exfiltration lagoons, a flow measurement facility, an outfall and related appurtenances approximately located as shown on Site Plan A.
- 1.1.6 The location of the facilities from which the discharge originates is approximately 425 metres west north west of the north east corner of Lot 1100, Range 5, Coast District and lying on the west side of the British Columbia Hydro and Power Authority Right of Way, Plan 2640; thence: 350 metres west north west; thence: 480 metres south south west; thence: 350 metres east south east; thence: 480 metres north north east and containing 16.8 ha more or less.

The location of the point of discharge is approximately 600 metres north west of the north west corner of Plan 1940, Range 5, Coast District.

1.2 Authorized Source

This section applies to the discharge of effluent from the overflow outfall to the Skeena River. The site reference number for this discharge is E220347.

- 1.2.1 The average authorized rate of discharge is 800 cubic metres per day.
- 1.2.2 The maximum authorized rate of discharge is 1,500 cubic metres per day.
- 1.2.3 The authorized discharge period is continuous.
- 1.2.4 The characteristics of the discharge must not exceed the following parameters:

5- Day biochemical oxygen demand Total suspended solids 45 mg/L 60 mg/L

Date issued: Date amended: (most recent) May 16, 1994 May 23, 2017

Daniel P. Bings for Director, *Environmental Management Act* Authorizations - North Permit Number: 12645

- 1.2.5 The discharge is authorized from Authorized Works, which are a two-cell aerated lagoon system, twin exfiltration lagoons, a flow measurement facility, an outfall and related appurtenances approximately located as shown on Site Plan A.
- 1.2.6 The location of the facilities from which the discharge originates is approximately 425 metres west north west of the north east corner of Lot 1100, Range 5, Coast District and lying on the west side of the British Columbia Hydro and Power Authority Right of Way, Plan 2640; thence: 350 metres west north west; thence: 480 metres south south west; thence: 350 metres east south east; thence: 480 metres north north east and containing 16.8 ha more or less.

The location of the point of discharge is approximately 350 metres south of the treatment facility or 600 metres south east of the north west corner of Plan 1940, Range 5, Coast District.

2. GENERAL REQUIREMENTS

2.1 Maintenance of Works and Emergency Procedures

The Permittee must regularly inspect the authorized works and maintain them in good working order.

In the event of an emergency or condition beyond the control of the Permittee which prevents effective operation of the Authorized Works or leads to an unauthorized discharge, the Permittee must take remedial action to restore the effective operation of the Authorized Works and to prevent any unauthorized discharges. The Permittee must immediately report the emergency or condition and the remedial action that has and will be taken to the RAPP line (1-877-952-7277, #7272 from mobile phone) or electronically at this link: http://www.env.gov.bc.ca/cos/rapp/form.htm.

The Director may require the Permittee to reduce or suspend operations until the Authorized Works have been restored, and/or corrective steps have been taken to prevent unauthorized discharges.

Date issued: Date amended: (most recent) May 16, 1994 May 23, 2017

Daniel P. Bings for Director, *Environmental Management Act* Authorizations - North Permit Number: 12645

Page 3 of 13

2.2 **Bypasses**

The Permittee must not allow any discharge authorized by this authorization to bypass the authorized works, except with the prior written approval of the Director.

2.3 Receiving Environment Monitoring

The Permittee must carry out a receiving environment monitoring program attached to the 1996 amended Permit 12645. The program must consist of sampling events at selected sites and must be established by the Permittee in accordance with the written requirements of the Director, that are listed within the 1996 amended Permit 12645. Based on the results from the analyses of the above samples, the Director may extend or alter monitoring requirements of the Permittee.

2.4 Posting of Outfall

The Permittee must erect, within 90 days of the date of this authorization and maintain a sign along the alignment of the outfall above the high water mark. The sign must identify the nature of the works. The sign must have lettering at least 150 millimetres high and bear the words SEWAGE OUTFALL. The Permittee must confirm whether the wording and size of the sign is acceptable to the Director prior to installing the sign.

2.5 Fencing

The Permittee must erect, within 90 days of the date of this authorization, a fence around the sewage treatment facility and such other areas as required by the Director. The fence must consist of sturdy wire-mesh, chain-link or wooden slats at least 1.3 metres high.

2.6 Treatment Plant Sludge Wasting and Disposal

The Permittee must dispose of sludge wasted from the treatment plant at a site and in a manner approved by the Director, or as authorized by regulation under the *Environmental Management Act*.

Date issued: Date amended: (most recent) May 16, 1994 May 23, 2017

Daniel P. Bings for Director, *Environmental Management Act* Authorizations - North Permit Number: 12645

Page 4 of 13

2.7 Exfiltration Lagoons

The Permittee must operate the rapid exfiltration lagoons such that:

(a) there is no overflow from the exfiltration to the surrounding environment, except as authorized by section 1.2 of this permit and(b) surface drainage is diverted away from the exfiltration lagoons.

2.8 **Facility Classification and Operator Certification**

The Permittee in a manner and on timelines specified by the Director must have the authorized works classified (and the classification must be maintained) by the Environmental Operators Certification Program Society (Society). The Permittee must cause the authorized works to be operated and maintained by:

- a) persons certified within and according to the program provided by the Society to the satisfaction of the Director, or
- b) persons who are qualified in the safe and proper operation of the facility for the protection of the environment, as demonstrated to the satisfaction of the Director.

The Permittee must notify the Director of the classification level of the facility and certification levels of the operators, and changes of operators and/or operator certification levels within 30 days of any change.

3. MONITORING REQUIREMENTS

3.1 Sampling Procedures

The Permittee must carry out sampling in accordance with the procedures described in the "British Columbia Field Sampling Manual for Continuous Monitoring and the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment, and Biological Samples, 2013 Edition (Permittee)" or most recent edition, or by alternative procedures as authorized by the Director.

A copy of the above manual is available on the Ministry web page at www.env.gov.bc.ca/epd/wamr/labsys/lab_meth_manual.html.

3.2 Analytical Procedures

The Permittee must carry out analyses in accordance with procedures described

Date issued: Date amended: (most recent) May 16, 1994 May 23, 2017

Daniel P. Bings for Director, *Environmental Management Act* Authorizations - North Permit Number: 12645

in the "British Columbia Laboratory Manual (2015 Permittee Edition)", or the most recent edition or by alternative procedures as authorized by the Director. A copy of the above manual is available on the Ministry web page at www.env.gov.bc.ca/epd/wamr/labsys/lab_meth_manual.html.

3.3 Effluent Grab Sampling

The Permittee must install and maintain a sampling facility and obtain a grab sample of the effluent once each month. The samples must be taken at the outlet of the Aerated Lagoon Cell #2 (S.E.A.M. Site No. E220346). The Permittee must take due care in sampling, storing and transporting the samples to control temperature and avoid contamination, breakage, and any other factor or influence that may compromise the integrity of the samples.

3.4 Effluent Analysis

The Permittee must collect sample (s) on a monthly basis and obtain analysis of the effluent sample (s) for the following parameters:

Parameter (units)	Sample Type	Sample	Reporting	
		Frequency	Frequency	
Influent Flow Rate	Field	Continuously	Monthly	
(m^3/day)	Measurement			
Temperature (°C)	Field	Monthly	Monthly	
	Measurement			
Dissolved O ₂ (mg/L)	Field	Monthly	Monthly	
	Measurement			
pH, pH units	Field	Monthly	Monthly	
	Measurement			
Total Ammonia	Field	Monthly	Monthly	
(mg/L)	Measurement			
$BOD_5 (mg/L)$	Grab	Monthly	Monthly	
TSS (mg/L)	Grab	Monthly	Monthly	
Total Phosphorus	Grab	Monthly	Monthly	
(mg/L)				
Total Nitrogen (mg/L)	Grab	Monthly	Monthly	

Date issued: Date amended: (most recent) May 16, 1994 May 23, 2017

Daniel P. Bings for Director, *Environmental Management Act* Authorizations - North Permit Number: 12645

Page 6 of 13

3.5 Outfall Pre–Discharge Monitoring

Prior to commencing discharge to the Skeena River via the side channel and outfall the Permittee must measure the conditions in the side channel. Grab samples must be collected during typical low flow non-flood conditions. A minimum of two (2) sets of samples must be collected with approximately a week between sets. Grab sampling locations must be the same points as those to be used for the receiving environment monitoring program described below. Field measurements must be taken for flow rate, temperature, pH, ammonia, and dissolved oxygen. Water samples from the side channel must be analysed for nitrate/ nitrite, total nitrogen, fecal coliform and fecal streptococci. Data suitably tabulated, must be submitted to the Director after completion of the pre-discharge monitoring program.

The Permittee must take due care in sampling, storing and transporting the samples to control temperature and avoid contamination, breakage, and any other factor or influence that may compromise the integrity of the samples.

3.6 Receiving Environment Monitoring

The Permittee must collect grab sample (s) from the side channel receiving discharge based on the schedule below and obtain analysis of the effluent sample (s) for the following parameters:

Parameters (units)	Upstream site	Downstream site	Sample
	_		Frequency
Side channel flow rate			Weekly during
			discharge and for
			1 month after
			discharge
Temperature (°C)	Field	Field	Weekly for 1
	Measurement	Measurement	month after
			discharge
pH, pH units	Field	Field	Weekly for 1
	Measurement	Measurement	month after
			discharge
Ammonia (mg/L)	Field	Field	Weekly for 1
	Measurement	Measurement	month after
			discharge
Dissolved Oxygen	Field	Field	Weekly for 1
(mg/L)	Measurement	Measurement	month after

Date issued: Date amended: (most recent) May 16, 1994 May 23, 2017

Daniel P. Bings for Director, *Environmental Management Act* Authorizations - North Permit Number: 12645

			discharge
Nitrate/ Nitrite (mg/L)	Grab	Grab	Sample if D.O.
			<2.0 mg/L or
			NH ₃ >2.0 mg/L
Total Nitrogen (mg/L)	Grab	Grab	Sample if D.O.
			<2.0 mg/L or
			$NH_3 > 2.0 mg/L$
Fecal Coliform (MPN/	Grab	Grab	Sample if D.O.
100 mL)			<2.0 mg/L or
			$NH_3 > 2.0 mg/L$
Fecal Streptococci	Grab	Grab	Sample if D.O.
(MPN/ 100 mL)			<2.0 mg/L or
			NH ₃ >2.0 mg/L

The location of the upstream must be approximately at the B.C. Hydro Right of Way, upstream of the outfall. The location of the downstream site must be 50 - 100 metres downstream of the outfall.

The Permittee must maintain a record of maintenance and calibration steps for all devices used in the sampling program for field measurement.

4. **<u>REPORTING REQUIREMENTS</u>**

4.1 Annual Report

The Permittee must collect and maintain data of analyses and flow measurements required under this authorization for inspection when requested by Ministry staff and submit the data for the previous calendar year to the Director in a form satisfactory to the Director. The Permittee must submit data of analyses and flow measurements summarized in a report within 30 days of the subject calendar year.

The Permittee must submit all data required to be submitted under this section by email to the Ministry's Routine Environmental Reporting Submission Mailbox (RERSM) at <u>EnvAuthorizationsReporting@gov.bc.ca</u> or as otherwise instructed by the Director. For guidelines on how to properly name the files and email subject lines or for more information visit the Ministry website: <u>http://www2.gov.bc.ca/gov/content/environment/waste-management/wastedischarge-authorization/data-and-report-submissions/routine-environmentalreporting-submission-mailbox</u>

Date issued: Date amended: (most recent) May 16, 1994 May 23, 2017

Daniel P. Bings for Director, *Environmental Management Act* Authorizations - North Permit Number: 12645

4.2 Non-compliance Notification

The Permittee must immediately notify the Director or designate by email at <u>EnvironmentalCompliance@gov.bc.ca</u> or as otherwise instructed by the Director of any non-compliance with the requirements of this authorization by the Permittee and take remedial action to remedy any effects of such non-compliance. The Permittee must provide the Director with written confirmation of all such non-compliance events, including available test results within 24 hours of the original notification, unless otherwise directed by the Director.

4.3 Non-compliance Reporting

If the Permittee fails to comply with any of the requirements of this authorization, the Permittee must, within 30 days of such non-compliance, submit to the Director a written report that is satisfactory to the Director and includes, but is not necessarily limited to, the following:

a. all relevant test results obtained by the Permittee related to the noncompliance,

b. an explanation of the most probable cause(s) of the noncompliance, and c. a description of remedial action planned and/or taken by the Permittee to prevent similar noncompliance(s) in the future.

The Permittee must submit all non-compliance reporting required to be submitted under this section by email to the Ministry's Compliance Reporting Submission Mailbox (CRSM) at <u>EnvironmentalCompliance@gov.bc.ca</u> or as otherwise instructed by the Director. For guidelines on how to report a non-compliance or for more information visit the Ministry website: <u>http://www2.gov.bc.ca/gov/content/environment/waste-management/waste-discharge-authorization/data-and-report-submissions/non-compliance-reporting-mailbox</u>

4.4 Non-compliance Reporting and Exceedances

The Permittee must cause each data submission required by this authorization to include a statement outlining the number of exceedances of permitted discharges that occurred during the reporting period, the dates of each such exceedance, an explanation as to the cause of the exceedances, and a description of the measures taken by the Permittee to rectify the cause of each such exceedance. If no exceedances occurred over the reporting period, the required statement may instead indicate that no exceedance of permitted discharges

Date issued: Date amended: (most recent) May 16, 1994 May 23, 2017

Daniel P. Bings for Director, *Environmental Management Act* Authorizations - North Permit Number: 12645

Page 9 of 13

occurred during the reporting period.

4.5 Spill Reporting

The Permittee must immediately report all spills to the environment (as defined in the Spill Reporting Regulation) in accordance with the Spill Reporting Regulation, which among other things, requires notification to the Provincial Emergency Program at 1-800-663-3456.

LICENCE TO PUBLISH DOCUMENT

- a. Subject to paragraph b, the permittee authorizes the Province to publish on the Ministry of Environment website the entirety of any Regulatory Document.
- b. The Province will not publish any information that could not, it if were subject to a request under section 5 of the Freedom of Information and Protection of Privacy Act, be disclosed under that Act.
- c. The permittee will identify and save harmless the Province and the Province's employees and agents from any claim for infringements of copyright or other intellectual property rights that the Province or any of the Province's employees or agents may sustain, incur, suffer or be put to at any time that arise from the publication of a Regulatory Document
- d.

GLOSSARY

"**Authorized Works**" means a two-cell aerated lagoon system, twin exfiltration lagoons, a flow measurement facility, an outfall and related appurtenances as stated in Section 1.1.4.

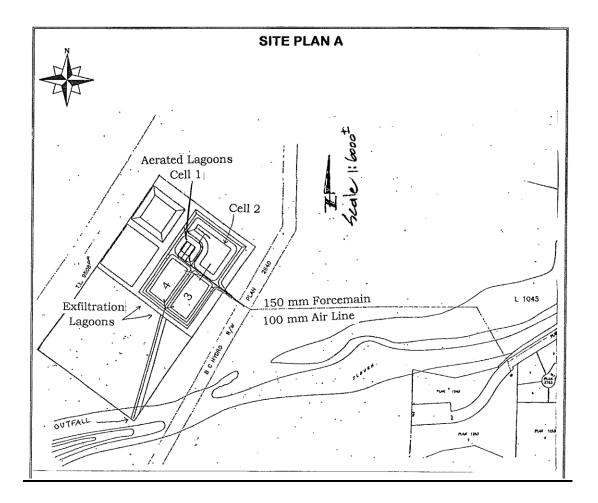
"**Facility**" means a sewage treatment system located in Thornhill, near Terrace, British Columbia.

"Province" means Her Majesty the Queen in right of British Columbia.

"**Regulatory Document**" means any document that the permittee is required to provide to the Director or the Province pursuant to: (i) this authorization; (ii) any regulation made under the *Environmental Management Act* that regulates the facility described in this authorization or the discharge of waste from the facility;

Date issued: Date amended: (most recent) May 16, 1994 May 23, 2017

Daniel P. Bings for Director, *Environmental Management Act* Authorizations - North Permit Number: 12645

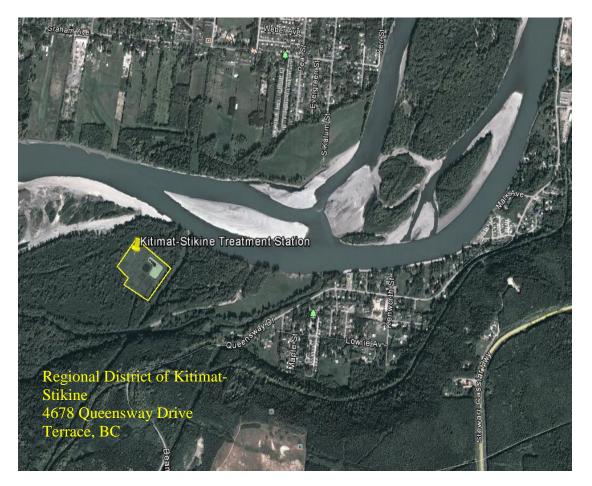

Page 10 of 13

or (iii) any order issued under the *Environmental Management Act* directed against the permittee that is related to the facility described in this authorization or the discharge of waste from that facility.

Date issued: Date amended: (most recent) May 16, 1994 May 23, 2017

Daniel P. Bings for Director, *Environmental Management Act* Authorizations - North Permit Number: 12645

Page 11 of 13



Date issued: Date amended: (most recent) May 16, 1994 May 23, 2017

Daniel P. Bings for Director, *Environmental Management Act* Authorizations - North Permit Number: 12645

Page 12 of 13

LOCATION MAP

Date issued: Date amended: (most recent) May 16, 1994 May 23, 2017

Daniel P. Bings for Director, *Environmental Management Act* Authorizations - North Permit Number: 12645

Page 13 of 13

[This Page Left Intentionally Blank]

Appendix C Permit Amendment

[This Page Left Intentionally Blank]

October 31, 2022

Tracking Number: 418893 Authorization Number: 12645

REGIONAL DISTRICT OF KITIMAT-STIKINE 300 4545 LAZELLE AVENUE TERRACE, BC V8G 4E1

Dear REGIONAL DISTRICT OF KITIMAT-STIKINE,

RE: Your application for an Authorization amendment under the *Environmental Management Act.*

In response to your email correspondence dated October 14, 2022, and pursuant to Section 16 of the *Environmental Management Act*, I hereby consent to an amendment of Permit 12645 sections 1.1.4, 1.2.4, and 3.4 to replace 5-day biochemical oxygen demand (BOD₅) with 5-day carbonaceous biochemical oxygen demand (C-BOD₅).

Please note that although a revised Authorization Document has not been produced at this time a copy of this letter is being placed on the Authorization file, as an addendum to the Authorization, to formally reflect the change.

This Authorization does not authorize entry upon, crossing over, or use for any purpose of private or Crown lands or works, unless and except as authorized by the owner of such lands or works. The responsibility for obtaining such authority rests with the permittee. This Authorization is issued pursuant to the provisions of the Environmental Management Act to ensure compliance with Section 120(3) of that statute, which makes it an offence to discharge waste, from a prescribed industry or activity, without proper authorization. It is also the responsibility of the permittee to ensure that all activities conducted under this authorization are carried out with regard to the rights of third parties, and comply with other applicable legislation that may be in force.

This decision may be appealed to the Environmental Appeal Board in accordance with Part 8 of the *Environmental Management Act*. An appeal must be delivered within 30 days from the date that notice of this decision is given. For further information, please contact the Environmental Appeal Board at (250) 387-3464.

Administration of this permit will be carried out by staff from the regional office. Plans, data and reports pertinent to the permit are to be submitted to the Regional Director, Environmental Protection, at <u>EnvAuthorizationsReporting@gov.bc.ca</u>.

Yours truly,

Ministry of Environment and Climate Change Strategy Regional Operations Branch Environmental Protection Division 2

Lare

Karen Moores, P.Ag., for Director Environmental Management Act Section Head, Authorizations North, Municipal Section Environmental Protection Division Ministry of Environment and Climate Change Strategy email: Karen.Moores@gov.bc.ca

ENCL: None

Appendix D Non-Compliance Report

[This Page Left Intentionally Blank]

300-4545 Lazelle Avenue Terrace, B.C. V8G 4E1 Tel 250-615-6100 Fax 250-635-9222

Our File No. 5340 20 06

То:	Attention: Non-c	npliance@gov.bc.ca ompliance Report for Authorization #12645 onitoring Data
From:	Nicole Lavoie, Env	ironmental Coordinator, nlavoie@rdks.bc.ca
Date:	July 25, 2022	
Re:	12645 No Monito	ring Data
Date of Non-C	ompliance:	June 1 to June 30, 2022

Location of Non-compliance: 4678 Queensway Drive, Terrace BC

Nature of Non-compliance: Under authorization 12645 section 3.3 and 3.4 for the Queensway Sewer Facility (Figure 1), the Regional District of Kitimat-Stikine (RDKS) is required to collect grab samples from the outlet of Aerated Lagoon B to be analyzed for total ammonia, BOD₅, total phosphorus and total nitrogen, and to field monitor the effluent for pH, DO, temperature and influent flow rate.

Figure 1 Queensway Sewer Facility, showing the access road and side channels, orthoimagery dated May 2019.

300-4545 Lazelle Avenue Terrace, B.C. V8G 4E1 Tel 250-615-6100 Fax 250-635-9222

The Queensway Sewer Facility is located along the Skeena River and is accessed by a road which crosses a side channel of the Skeena River (Figure 2). During the month of June 2022, the Skeena River experienced flooding with the closest hydrometric data station recording between 6.5 and 11 metres over the month, resulting in water levels 3.7 to 7.3 metres higher than the 2021 average of 3.7 metres. The flooding resulted in the access to the Queensway Sewer Facility being inundated by flows from the Skeena River. The lagoons were not breached by the flooding.

Figure 2: Side channel of the Skeena River that must be crossed to access the Queensway Sewer Facility. Photo taken June 6, 2022

Due to the flooding of the access road, grab samples and monitoring were not completed during the month of June, with the exception of influent flow rate which is monitored continuously in the aerator building, resulting in non-compliance with the authorization. Under the authorisation, the RDKS is required to submit non-compliance reporting within 30 days of non-compliance events.

Action to be taken: Influent flow rate for the month of June will be recorded and included in the 2022 annual report. Monthly sampling and monitoring will continue in July, as per the requirements of the authorisation.

Prepared by:

Dicole Loraie

Nicole Lavoie, B.Tech. Environmental Services Coordinator Regional District of Kitimat-Stikine 300 – 4545 Lazelle Avenue Terrace, BC V8G 4E1 <u>nlavoie@rdks.bc.ca</u>

Reviewed by:

Jobin Kunjumon, B. Tech, EOCP WD 1, WT 1 Operations Manager Regional District of Kitimat-Stikine 300 – 4545 Lazelle Avenue Terrace, BC V8G 4E1 jkunjumon@rdks.bc.ca

Appendix E Lab Reports

[This Page Left Intentionally Blank]

nlavoie@rdks.bc.ca

Work Order: N22A101

RECEIVED: 25-Jan-2022

ANALYTICAL REPORT

Regional District of Kitimat Stikine 300 - 4545 Lazelle Avenue Terrace BC, V8G 4E1

Project: Queensway Project Number: -Project Manager: Nicole Lavoie

REPORTED: 31-May-2022

All analyses were performed in accordance with standard procedures published by BC MoE, Health Canada, Environment Canada, the American Public Health Association, or the US EPA.

Northern Laboratories (2010) Ltd.

1 this

Jesse Newton Laboratory Manager

Regional District of Kitimat Stikine

Work Order: N22A101

LAB # SAMPLED DATE SAMPLED TIME SAMPLE ID			N22A101-01 24-Jan-22 13:50 Queensway Sewer	
	MRL	Units		
General Parameters (Wate	er)			
рН	1.0	pH units	7.1	
Biochemical Oxygen Demand / BOD	4.0	mg/L	16	
Carbonaceous Biochemica Oxygen Demand / CBOD	4.0	mg/L	12	
Solids, Total Suspended / TSS	5 1.0	mg/L	8.8	
Ammonia (total as N)	0.03	mg/L	29.7	
Nitrogen, Total Kjeldahl	0.500	mg/L	33.5	
Phosphorus (total)	0.05	mg/L	4.09	
Field Data (Water)				
Conductivity (field)	1.0	u\$/cm	293	
Dissolved Oxygen (field)	0.10	mg/L	5.70	
pH (field)	1.00	-	7.47	
Temperature (field)	0.0	°C	0.6	

Glossary of Terms

MRL	Method Reporting Limit
°C	Degrees Celsius
mg/L	Milligrams per Litre
pH units	pH units
u\$/cm	Micro Siemens per centimeter

ANALYTICAL REPORT

Regional District of Kitimat Stikine 300 - 4545 Lazelle Avenue Terrace BC, V8G 4E1

nlavoie@rdks.bc.ca

Work Order: N22B065

RECEIVED: 15-Feb-2022

Project: Queensway Project Number: -Project Manager: Nicole Lavoie

REPORTED: 31-May-2022

All analyses were performed in accordance with standard procedures published by BC MoE, Health Canada, Environment Canada, the American Public Health Association, or the US EPA.

Northern Laboratories (2010) Ltd.

1 Min

Jesse Newton Laboratory Manager

Regional District of Kitimat Stikine

Work Order: N22B065

LAB # SAMPLED DATE SAMPLED TIME SAMPLE ID	MRL	Units	N22B065-01 14-Feb-22 11:15 Queensway Sewer	
General Parameters (Wate	er)			
рН	1.0	pH units	7.3	
Biochemical Oxygen Demand / BOD	4.0	mg/L	11	
Carbonaceous Biochemical Oxygen Demand / CBOD	4.0	mg/L	9.0	
Solids, Total Suspended / TSS	; 1.0	mg/L	5.2 [1]	
Ammonia (total as N)	0.03	mg/L	25.4	
Nitrogen, Total Kjeldahl	0.500	mg/L	21.5	
Phosphorus (total)	0.05	mg/L	3.26	
Field Data (Water)				
Conductivity (field)	1.0	u\$/cm	256	
Dissolved Oxygen (field)	0.10	mg/L	10.4	
pH (field)	1.00	-	7.14	
Temperature (field)	0.0	°C	1.4	

Special Notes

1 = Sample was analyzed outside of the recommended holding time.

Glossary of Terms

MRL	Method Reporting Limit
°C	Degrees Celsius
mg/L	Milligrams per Litre
pH units	pH units
u\$/cm	Micro Siemens per centimeter

ANALYTICAL REPORT

Regional District of Kitimat Stikine 300 - 4545 Lazelle Avenue Terrace BC, V8G 4E1 nlavoie@rdks.bc.ca

Work Order: N22C088 RECEIVED: 15-Mar-2022 Project: Queensway Project Number: -Project Manager: Nicole Lavoie

REPORTED: 31-May-2022

All analyses were performed in accordance with standard procedures published by BC MoE, Health Canada, Environment Canada, the American Public Health Association, or the US EPA.

Northern Laboratories (2010) Ltd.

1 Min

Jesse Newton Laboratory Manager

Regional District of Kitimat Stikine

Work Order: N22C088

LAB # SAMPLED DATE SAMPLED TIME SAMPLE ID	MRL	Units	N22C088-01 14-Mar-22 12:00 Queensway Sewer
General Parameters (Wate	r)		
рН	1.0	pH units	7.3
Biochemical Oxygen Demand / BOD	4.0	mg/L	13
Carbonaceous Biochemical Oxygen Demand / CBOD	4.0	mg/L	8.4
Solids, Total Suspended / TSS	1.0	mg/L	7.3
Ammonia (total as N)	0.03	mg/L	25.0
Phosphorus (total)	0.05	mg/L	2.77
Field Data (Water)			
Conductivity (field)	1.0	u\$/cm	281
Dissolved Oxygen (field)	0.10	mg/L	10.8
pH (field)	1.00	-	7.66
Temperature (field)	0.0	°C	4.6

Glossary of Terms

MRL	Method Reporting Limit
°C	Degrees Celsius
mg/L	Milligrams per Litre
pH units	pH units
u\$/cm	Micro Siemens per centimeter

ANALYTICAL REPORT

Page 1 of 2

Regional District of Kitimat Stikine 300 - 4545 Lazelle Avenue Terrace BC, V8G 4E1 nlavoie@rdks.bc.ca

Work Order: N22D084 RECEIVED: 20-Apr-2022 Project: Queensway Project Number: -Project Manager: Nicole Lavoie

REPORTED: 31-May-2022

All analyses were performed in accordance with standard procedures published by BC MoE, Health Canada, Environment Canada, the American Public Health Association, or the US EPA.

Northern Laboratories (2010) Ltd.

f the

Jesse Newton Laboratory Manager

Regional District of Kitimat Stikine

Work Order: N22D084

LAB # SAMPLED DATE SAMPLED TIME SAMPLE ID	MRL	Units	N22D084-01 19-Apr-22 11:10 Queensway Sewer
General Parameters (Wate	er)		
рН	1.0	pH units	7.8
Biochemical Oxygen Demand / BOD	4.0	mg/L	36
Carbonaceous Biochemical Oxygen Demand / CBOD	4.0	mg/L	15
Solids, Total Suspended / TSS	1.0	mg/L	27
Ammonia (total as N)	0.03	mg/L	23.0 [1]
Nitrogen, Total Kjeldahl	0.500	mg/L	24.8
Phosphorus (total)	0.05	mg/L	3.53
Field Data (Water)			
Conductivity (field)	1.0	u\$/cm	329
Dissolved Oxygen (field)	0.10	mg/L	14.5
pH (field)	1.00	-	8.01
Temperature (field)	0.0	°C	10.1

Special Notes

1 = Sample was analyzed outside of the recommended holding time.

Glossary of Terms

MRL	Method Reporting Limit
°C	Degrees Celsius
mg/L	Milligrams per Litre
pH units	pH units
u\$/cm	Micro Siemens per centimeter

nlavoie@rdks.bc.ca

Work Order: N22E048

RECEIVED: 10-May-2022

ANALYTICAL REPORT

Regional District of Kitimat Stikine 300 - 4545 Lazelle Avenue Terrace BC, V8G 4E1

Project: Queensway Project Number: -Project Manager: Nicole Lavoie

REPORTED: 31-May-2022

All analyses were performed in accordance with standard procedures published by BC MoE, Health Canada, Environment Canada, the American Public Health Association, or the US EPA.

Northern Laboratories (2010) Ltd.

f this

Jesse Newton Laboratory Manager

Regional District of Kitimat Stikine

Work Order: N22E048

LAB # SAMPLED DATE SAMPLED TIME SAMPLE ID	MRI	Units	N22E048-01 09-May-22 11:30 Queensway Sewer	
General Parameters (Wate				
_	-	pH units	7.4	
pH		•		
Biochemical Oxygen Demand / BOD	4.0	mg/L	23	
Carbonaceous Biochemical Oxygen Demand / CBOD	4.0	mg/L	11	
Solids, Total Suspended / TSS	1.0	mg/L	12	
Ammonia (total as N)	0.03	mg/L	23.5	
Nitrogen, Total Kjeldahl	0.500	mg/L	28.3	
Phosphorus (total)		mg/L	3.36	
Field Data (Water)				
Conductivity (field)	1.0	u\$/cm	373	
Dissolved Oxygen (field)		mg/L	11.3	
pH (field)	1.00		7.93	
Temperature (field)	0.0	°C	14.0	

Glossary of Terms

MRL	Method Reporting Limit
°C	Degrees Celsius
mg/L	Milligrams per Litre
pH units	pH units
u\$/cm	Micro Siemens per centimeter

ANALYTICAL REPORT

Page 1 of 2

Regional District of Kitimat Stikine 300 - 4545 Lazelle Avenue Terrace BC, V8G 4E1 nlavoie@rdks.bc.ca

Work Order: N22G100 RECEIVED: 19-Jul-2022 Project: Queensway Project Number: -Project Manager: Nicole Lavoie

REPORTED: 09-Aug-2022

All analyses were performed in accordance with standard procedures published by BC MoE, Health Canada, Environment Canada, the American Public Health Association, or the US EPA.

Northern Laboratories (2010) Ltd.

1 Min

Jesse Newton Laboratory Manager

Regional District of Kitimat Stikine

Work Order: N22G100

LAB # SAMPLED DATE SAMPLED TIME SAMPLE ID			N22G100-01 18-Jul-22 13:00 Queensway Sewer	
	MRL	Units		
General Parameters (Wate	er)			
рН	1.0	pH units	6.8	
Biochemical Oxygen Demand / BOD	4.0	mg/L	92	
Carbonaceous Biochemical Oxygen Demand / CBOD	4.0	mg/L	16	
Solids, Total Suspended / TSS	1.0	mg/L	28	
Ammonia (total as N)	0.03	mg/L	9.32	
Nitrogen, Total Kjeldahl	0.500	mg/L	15.6	
Phosphorus (total)	0.05	mg/L	3.34	
Field Data (Water)				
Conductivity (field)	1.0	u\$/cm	423	
Dissolved Oxygen (field)	0.10	mg/L	14.1	
pH (field)	1.00	-	7.52	
Temperature (field)	0.0	°C	18.9	

Glossary of Terms

MRL	Method Reporting Limit
°C	Degrees Celsius
mg/L	Milligrams per Litre
pH units	pH units
u\$/cm	Micro Siemens per centimeter

CERTIFICATE OF ANALYSIS

Work Order	× VA22B9190	Page	: 1 of 3
Client	: Regional District of Kitimat-Stikine	Laboratory	: Vancouver - Environmental
Contact	: Nicole Lavoie	Account Manager	: Amber Springer
Address	: # 300 - 4545 Lazelle Avenue	Address	: 8081 Lougheed Highway
	Terrace BC Canada V8G 4E1		Burnaby BC Canada V5A 1W9
Telephone	:	Telephone	: +1 604 253 4188
Project	: Queensway Sewer	Date Samples Received	: 16-Aug-2022 22:20
PO	:	Date Analysis Commenced	: 18-Aug-2022
C-O-C number	:	Issue Date	: 26-Aug-2022 16:17
Sampler	:		
Site	:		
Quote number	: VA22-RDKS100-001		
No. of samples received	: 1		
No. of samples analysed	:1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Cindy Tang	Team Leader - Inorganics	Inorganics, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Ophelia Chiu	Department Manager - Organics	Inorganics, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
mg/L	milligrams per litre pH units
pH units	

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Effluent			Cl	lient sample ID	Queensway		 	
(Matrix: Water)	Matrix: Water)							
	Client sampling date / time						 	
Analyte	CAS Number	Method	LOR	Unit	VA22B9190-001		 	
					Result		 	
Physical Tests								
рН		E108	0.10	pH units	8.32		 	
solids, total suspended [TSS]		E160	3.0	mg/L	30.7		 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	11.0		 	
nitrogen, total	7727-37-9	E366	0.030	mg/L	12.8		 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	3.80		 	
Aggregate Organics								
biochemical oxygen demand [BOD]		E550	2.0	mg/L	25.9		 	
carbonaceous biochemical oxygen demand [CBOD]		E555	2.0	mg/L	9.3		 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: VA22B9190	Page	: 1 of 7
Client	Regional District of Kitimat-Stikine	Laboratory	: Vancouver - Environmental
Contact	Nicole Lavoie	Account Manager	: Amber Springer
Address	: # 300 - 4545 Lazelle Avenue	Address	: 8081 Lougheed Highway
	Terrace BC Canada V8G 4E1		Burnaby, British Columbia Canada V5A 1W9
Telephone	:	Telephone	+1 604 253 4188
Project	: Queensway Sewer	Date Samples Received	: 16-Aug-2022 22:20
00	:	Issue Date	: 26-Aug-2022 16:17
C-O-C number	:		-
Sampler	:		
Site	:		
Quote number	: VA22-RDKS100-001		
lo. of samples received	:1		
No. of samples analysed	:1		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- <u>No</u> Laboratory Control Sample (LCS) outliers occur
- <u>No</u> Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

atrix: Water					Ev	aluation: × =	Holding time excee	edance ; 🔹	= Within	Holding Til
Analyte Group	Method	Sampling Date	Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Biochemical Oxygen Demand - 5 day										
HDPE [BOD HT 3d]										
Queensway Sewer System	E550	15-Aug-2022					18-Aug-2022	3 days	3 days	✓
Aggregate Organics : Biochemical Oxygen Demand (Carbonaceous) - 5 day										
HDPE [BOD HT 3d]										
Queensway Sewer System	E555	15-Aug-2022					18-Aug-2022	3 days	3 days	1
nions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)	5000	45 4 0000								,
Queensway Sewer System	E298	15-Aug-2022	24-Aug-2022				24-Aug-2022	28 days	9 days	~
nions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid)	E366	15-Aug-2022	24-Aug-2022				25-Aug-2022	29 dava	10 days	1
Queensway Sewer System	E300	15-Aug-2022	24-Aug-2022				25-Aug-2022	20 days	10 days	•
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid)										
Queensway Sewer System	E372-U	15-Aug-2022	24-Aug-2022				25-Aug-2022	28 davs	10 days	1
		J. J. J.	5				5	,	- ,	
Physical Tests : pH by Meter										
HDPE										
Queensway Sewer System	E108	15-Aug-2022	23-Aug-2022				23-Aug-2022	0.25	2.12	×
								hrs	hrs	EHTR-FI
Physical Tests : TSS by Gravimetry										
HDPE										
Queensway Sewer System	E160	15-Aug-2022					20-Aug-2022	7 days	5 days	✓

Legend & Qualifier Definitions

 Page
 : 4 of 7

 Work Order
 : VA22B9190

 Client
 : Regional District of Kitimat-Stikine

 Project
 : Queensway Sewer

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluatio	on: × = QC frequ	ency outside spe	ecification; 🗸 =	QC frequency wit	hin specificatio
Quality Control Sample Type				ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Ammonia by Fluorescence	E298	615887	1	17	5.8	5.0	~
Biochemical Oxygen Demand - 5 day	E550	608748	1	13	7.6	5.0	✓
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	609061	1	11	9.0	5.0	✓
pH by Meter	E108	614341	1	15	6.6	5.0	✓
Total Nitrogen by Colourimetry	E366	615888	1	16	6.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	615889	1	16	6.2	5.0	✓
TSS by Gravimetry	E160	610965	1	20	5.0	5.0	1
Laboratory Control Samples (LCS)							
Ammonia by Fluorescence	E298	615887	1	17	5.8	5.0	\checkmark
Biochemical Oxygen Demand - 5 day	E550	608748	1	13	7.6	5.0	✓
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	609061	1	11	9.0	5.0	✓
pH by Meter	E108	614341	1	15	6.6	5.0	1
Total Nitrogen by Colourimetry	E366	615888	1	16	6.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	615889	1	16	6.2	5.0	✓
TSS by Gravimetry	E160	610965	1	20	5.0	5.0	~
Method Blanks (MB)							
Ammonia by Fluorescence	E298	615887	1	17	5.8	5.0	1
Biochemical Oxygen Demand - 5 day	E550	608748	1	13	7.6	5.0	✓
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	609061	1	11	9.0	5.0	✓
Total Nitrogen by Colourimetry	E366	615888	1	16	6.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	615889	1	16	6.2	5.0	✓
TSS by Gravimetry	E160	610965	1	20	5.0	5.0	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	615887	1	17	5.8	5.0	✓
Total Nitrogen by Colourimetry	E366	615888	1	16	6.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	615889	1	16	6.2	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
pH by Meter	E108 Vancouver - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
TSS by Gravimetry	E160 Vancouver - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Ammonia by Fluorescence	E298 Vancouver - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Nitrogen by Colourimetry	E366 Vancouver - Environmental	Water	APHA 4500-P J (mod)	Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Vancouver - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Biochemical Oxygen Demand - 5 day	E550 Vancouver - Environmental	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555 Vancouver - Environmental	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Nitrification inhibitor is added to samples to prevent nitrogenous compounds from consuming oxygen resulting in only carbonaceous oxygen demand being reported by this method. Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Vancouver - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for Total Nitrogen in water	EP366	Water	APHA 4500-P J (mod)	Samples are heated with a persulfate digestion reagent.

Page	: 7 of 7
Work Order	: VA22B9190
Client	: Regional District of Kitimat-Stikine
Project	Queensway Sewer

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
	Vancouver -			
	Environmental			
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order	·VA22B9190	Page	: 1 of 6
Client	Regional District of Kitimat-Stikine	Laboratory	: Vancouver - Environmental
Contact	Nicole Lavoie	Account Manager	: Amber Springer
Address	:# 300 - 4545 Lazelle Avenue	Address	∶8081 Lougheed Highway
	Terrace BC Canada V8G 4E1		Burnaby, British Columbia Canada V5A 1W9
Telephone	:	Telephone	: +1 604 253 4188
Project	: Queensway Sewer	Date Samples Received	: 16-Aug-2022 22:20
PO		Date Analysis Commenced	: 18-Aug-2022
C-O-C number	:	Issue Date	: 26-Aug-2022 16:17
Sampler	:		
Site			
Quote number	:VA22-RDKS100-001		
No. of samples received	:1		
No. of samples analysed	:1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Cindy Tang	Team Leader - Inorganics	Vancouver Inorganics, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Inorganics, Burnaby, British Columbia
Ophelia Chiu	Department Manager - Organics	Vancouver Inorganics, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 6

 Work Order
 : VA22B9190

 Client
 : Regional District of Kitimat-Stikine

 Project
 : Queensway Sewer

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water					Labora	tory Duplicate (D	UP) Report				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 610965)										
FJ2202184-002	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 614341)										
VA22B7558-001	Anonymous	рН		E108	0.10	pH units	7.86	7.93	0.887%	4%	
Anions and Nutrien	ts (QC Lot: 615887)										
VA22B9104-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 615888)										
VA22B9190-001	Queensway Sewer System	nitrogen, total	7727-37-9	E366	0.600	mg/L	12.8	13.5	5.33%	20%	
Anions and Nutrien	ts (QC Lot: 615889)										
VA22B9190-001	Queensway Sewer System	phosphorus, total	7723-14-0	E372-U	0.100	mg/L	3.80	3.96	4.18%	20%	
Aggregate Organics	Gige (QC Lot: 608748)										
VA22B8614-003	Anonymous	biochemical oxygen demand [BOD]		E550	2.0	mg/L	4.4	4.5	2.2%	30%	
Aggregate Organics	(QC Lot: 609061)										
WR2200862-003	Anonymous	carbonaceous biochemical oxygen demand [CBOD]		E555	2.0	mg/L	<2.0	<2.0	0.0%	30%	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

CAS Number	Method	LOR	Unit	Result	Qualifier
8	E160	3	mg/L	<3.0	
7664-41-7 I	E298	0.005	mg/L	<0.0050	
7727-37-9 I	E366	0.03	mg/L	<0.030	
7723-14-0 I	E372-U	0.002	mg/L	<0.0020	
I	E550	2	mg/L	<2.0	
[E555	2	mg/L	<2.0	
	 7664-41-7 7727-37-9 7723-14-0 	CAS Number Method E160 7664-41-7 E298 7727-37-9 E366 7723-14-0 E372-U E550 E555	E160 3 7664-41-7 E298 0.005 7727-37-9 E366 0.03 7723-14-0 E372-U 0.002 E550 2	E160 3 mg/L 7664-41-7 E298 0.005 mg/L 7727-37-9 E366 0.03 mg/L 7723-14-0 E372-U 0.002 mg/L E550 2 mg/L	Image: marked state in the

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	v Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Physical Tests (QCLot: 610965)											
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	89.8	85.0	115			
Physical Tests (QCLot: 614341)											
рН		E108		pH units	7 pH units	100	98.0	102			
Anions and Nutrients (QCLot: 615887)											
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	103	85.0	115			
Anions and Nutrients (QCLot: 615888)											
nitrogen, total	7727-37-9	E366	0.03	mg/L	0.5 mg/L	102	75.0	125			
Anions and Nutrients (QCLot: 615889)											
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	92.0	80.0	120			
Aggregate Organics (QCLot: 608748)											
biochemical oxygen demand [BOD]		E550	2	mg/L	198 mg/L	103	85.0	115			
Aggregate Organics (QCLot: 609061)											
carbonaceous biochemical oxygen demand [CBOD]		E555	2	mg/L	198 mg/L	96.5	85.0	115			

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water	Jb-Matrix: Water						Matrix Spike (MS) Report								
							Recovery (%)	Recovery	Limits (%)						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier					
Anions and Nutri	ents (QCLot: 615887)														
VA22B9190-001	Queensway Sewer System	ammonia, total (as N)	7664-41-7	E298	ND mg/L	0.1 mg/L	ND	75.0	125	MS-B					
Anions and Nutri	ents (QCLot: 615888)														
VA22B9205-001	Anonymous	nitrogen, total	7727-37-9	E366	0.406 mg/L	0.4 mg/L	102	70.0	130						
Anions and Nutri	Anions and Nutrients (QCLot: 615889)														
VA22B9205-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0492 mg/L	0.05 mg/L	98.4	70.0	130						

Page Work Order Client Project	: 6 of 6 : VA22B9190 : Regional District of Kitimat-Stikine : Queensway Sewer	ALS
Qualifiers		
Qualifier	Description	
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.	

Chain of Custody (COC) / Analytical Request Form

COC Number: 17 -

Affix ALS barcode label here

(lab use only)

Page

of

. *

	LS)	Er	6. <i>3</i> i	(1	())	1		6	1 . 1	Ľ.	ð	
--	-----	----	---------------	------------	-----	---	--	----------	--------------	----	---	--

Canada Toli Free: 1 800 668 9878

Report To	Contact and company name below will appear on the final report	Report Format / Distribution	Т	Selec	t Serv	ice Le	evel B	elow -	Conta	act yo	ur AM t	to con	firm all	E&P 1	TATs (s	surcharg	as may	apply)
Company;	Regional District of Kitimat-Stikine	Select Report Format: V PDF V EXCEL V EDD (DIGITAL)	+	Re	gular	(R)	ি	Standar	d TAT i	if receiv	ived by 3	3 pm - b	usiness	days - r	no surch:	arges appl	y		<u> </u>
Contact:	Nicole Lavoie	Quality Control (QC) Report with Report VES . NO	ays)	_	y [P4-				Ş	18	lusine	ss day	y [E1 -	- 100%	.]				
Phone:	250-615-6100	Compare Results to Criteria on Report - provide details below if box checked	ORIT	3 da	y [P3-	-25%]		-	ERGE	San	ne Dav	. Wee	kend	or Sta	- itutorv	holiday	/ IE2 -:	200%	
	Company address below will appear on the final report	Select Distribution: 🗹 EMAIL 🗌 MAIL 🗍 FAX	IR PR	1	y [P2-				8						nay ap		-	,0	
Street:	4545 Lazelle Avenue	Email 1 or Fax_enviro.dept@rdks.bc.ca		Date an	nd Time	e Requ	ired fo	r all Ed	SP TAT	s:	Ì			-					
City/Province	e: Terrace/BC	Email 2 ckerr@rdks.bc.ca; jkunjumon@rdks.bc.ca	For te	sts that	can not	be per	formed	accordi	ng to th	e servi	ce level s	selected	, you wil	ll be cont	tacted.				·
Postal Code:	V8G4E1	Email 3 pmiller@rdks.bc.ca; jlacroix@rdks.bc.ca								Ar	nalysis	s Req	uest						
Invoice To	Same as Report To	Invoice Distribution			Indic	cate Fi	itered (F), Pre	served	(P) or	Filtered	and Pre	eserved	l (F/P) be	wole		Т	stail	Γ
	Copy of Invoice with Report VES NO	Select Invoice Distribution: 🕑 EMAIL 🗌 MAIL 🗌 FAX		Р	Р	Ρ·					Ţ	1			-		1.	further deta	
Company:	Regional District of Kitimat-Stikine	Email 1 or Fax anne-maries@rdks.bc.ca		1		Ъ В	Ę	1.									1	Ę	
Contact:	Nicole Lavoie	Email 2 enviro.dept@rdks.bc.ca	1		ng/L)	0.002	2 mg/L)	4										le fi	1
	Project Information	Oil and Gas Required Fields (client use)	а 2 н. т.	·	- <u>6</u> 3 -	D A	day :							 .				provide	k -
ALS Accoun	nt # / Quote #: VA22-RDKS100-001	AFE/Cost Center: PO#		1	±2 0	imeti	1 (5			1	'				·			se pi	
Job #:	Queensway Sewer	Major/Minor Code: Routing Code:		(e)	Colourimetry 0.03mg/L)	Colourimetry	Demand (5	1		÷ .	1.	1						(please	CONTAINERS
PO / AFE: V	1A22 - RDKS100-001	Requisitioner:		Fluorescence)	lala		D											19	AIN
LSD:		Location:	iet _	Pore	o C	ls (by	Oxygen [1.								Я	1 PE	N N
ALC I ab 4	Nork Order # (lab use only): $9 410$	ALS Contact: Sample:	avin	(pA Fil	- E	- hor	Š	10							·		No.	laza	Ū.
		ALS CONTACT.	ِي م	lia (b	rotai Nitrogen	rolai Phosph	Siochemical						·	. ·	×		E S	1	NUMBER OF
ALS Sample		Date Time Sample Type	SS (by	- DE	N Te	a P	cher	4) + 0								SAMPL	Sample	MBI
(lab use onl)		(dd-mmm-yy) (hh:cam)	1°	<u>₹</u>	P,	₽	, ä	K				<u> </u>			\square		Ś	<u>s</u>	12
	QUEENSWAY SEWER SYSTER	1. AUS 15/22 10:004m Effluent	\checkmark	V	\checkmark		V	\checkmark	\checkmark					· .					2
	2 · · · · · · · · · · · · · · · · · · ·			}															
		Environmental Division			ľ														T
		Vancouver			<u> </u>	1.			1									1	
		Work Order Reference	-		-	+	+	+	+	+		+		<u>├</u> ──┼		-		+-	+
	······································	——— VA22B9190 —	+	+		<u> </u>	+	+	-	-		<u> </u>		+		<u> </u>	+	+	+
	······································	[+	<u> </u>	├			+		+		+	<u> </u>	<u>├</u>	\rightarrow		<u> </u>	+	╞╍╍
					ļ	∔	· · ·		4	ļ				<u> </u>			_		┢
					<u> </u>		<u> </u>			_		ļ						\bot	┶
												İ			Ì	·	1 ·	_	
				1.	Г	Τ										-			
· · · · · · · · · · · · · · · · · · ·			-					1	<u> </u>										
	Field Blank	Telephone : +1 604 253 4168	+		+	† ·	+		+	+				<u>├</u>	-+		+	+	+
		Specify Criteria to add on report by clicking on the drop-down list below	1		<u> </u>	1	SA	MPL	ECON	UDITI	ON AS	REC	EIVED) (lab r	use on		<u> </u>	<u> </u>	┹┯
Drinki	ing Water (DW) Samples ¹ (client use)	(electronic COC only)	Froz	en	· ·						rvation	· · · · ·	Yes	<u> </u>	1	N	5	<u> </u>	
Are samples	taken from a Regulated DW System? British Columbia Ap	roved and Working Water Quality Guidelines (MAY, 2015)	lce J	Packs	V	Tce	Cube	s 🔲			seal int		Yes	Ē	<u>.</u>	N		ſ	ō.
· · 🖸	YES 🖸 NO			ling Ini				1			· .				.	5	2	-	· :
Are samples	for human consumption/ use?		-	11	VIITIAL	COOL	ER TE	MPER	TURE	S ℃	. د		.F	INAL CO	OOLER	TEMPER	ATURES	3°C	
] YES ☑ NO		K	7.8				•				1 : 1	3.5	5	e				
	SHIPMENT RELEASE (client use)	INTIAL SHIPMENT RECEPTION (lab use only)							FINA	L SHI	IPMEN	IT RE	CEPTI	ON (Ia	ab use	only)			
The second for	V. MALA 9 Date:	e: Received by /// > Date:	Tin	e	Rec	ceived	by:	n			Dat	e:					Time	e:	
Released by	AWA AUG. 15/2027 10	n n h n h	11/	わへ	1		· ·	νc				· · ·	Λ	a'-1	1.1		- 1	122	~

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

CERTIFICATE OF ANALYSIS

Work Order	: VA22C3716	Page	: 1 of 3
Amendment	:1		
Client	: Regional District of Kitimat-Stikine	Laboratory	: Vancouver - Environmental
Contact	: Nicole Lavoie	Account Manager	: Amber Springer
Address	: # 300 - 4545 Lazelle Avenue	Address	: 8081 Lougheed Highway
	Terrace BC Canada V8G 4E1		Burnaby BC Canada V5A 1W9
Telephone	:	Telephone	+1 604 253 4188
Project	: Queensway Sewer	Date Samples Received	: 30-Sep-2022 11:55
PO	:	Date Analysis Commenced	: 01-Oct-2022
C-O-C number	:	Issue Date	: 17-Oct-2022 15:12
Sampler	:		
Site	:		
Quote number	: VA22-RDKS100-001		
No. of samples received	: 1		
No. of samples analysed	: 1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Caitlin Macey	Team Leader - Inorganics	Inorganics, Burnaby, British Columbia
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
mg/L	milligrams per litre

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Workorder Comments

Amended COA(1): cBOD data has been added.

Analytical Results

Sub-Matrix: Effluent			Cl	ient sample ID	QUEENSWAY	 	
(Matrix: Water)					SEWER SYSTEM		
			Client samp	ling date / time		 	
					12:00		
Analyte	CAS Number	Method	LOR	Unit	VA22C3716-001	 	
					Result	 	
Physical Tests							
solids, total suspended [TSS]		E160	3.0	mg/L	24.5	 	
Anions and Nutrients							
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	25.4	 	
nitrogen, total	7727-37-9	E366	0.030	mg/L	29.4	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	4.47	 	
Aggregate Organics							
biochemical oxygen demand [BOD]		E550	2.0	mg/L	16.9	 	
carbonaceous biochemical oxygen demand [CBOD]		E555	2.0	mg/L	6.8	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: VA22C3716	Page	: 1 of 6
Amendment	:1		
Client	Regional District of Kitimat-Stikine	Laboratory	: Vancouver - Environmental
Contact	: Nicole Lavoie	Account Manager	: Amber Springer
Address	: # 300 - 4545 Lazelle Avenue	Address	: 8081 Lougheed Highway
	Terrace BC Canada V8G 4E1		Burnaby, British Columbia Canada V5A 1W9
Telephone	:	Telephone	: +1 604 253 4188
Project	: Queensway Sewer	Date Samples Received	: 30-Sep-2022 11:55
PO	;	Issue Date	: 17-Oct-2022 15:12
C-O-C number	:		
Sampler	:		
Site	:		
Quote number	: VA22-RDKS100-001		
No. of samples received	:1		
No. of samples analysed	:1		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- <u>No</u> Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• <u>No</u> Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Iatrix: Water Evaluation: × = Holding time exceedance ; ✓ = Within Holding Time										
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Aggregate Organics : Biochemical Oxygen Demand - 5 day										
HDPE [BOD HT 3d] QUEENSWAY SEWER SYSTEM	E550	26-Sep-2022					01-Oct-2022	3 days	5 days	¥ EHTR
Aggregate Organics : Biochemical Oxygen Demand (Carbonaceous) - 5 day										
HDPE [BOD HT 3d] QUEENSWAY SEWER SYSTEM	E555	26-Sep-2022					12-Oct-2022	3 days	16 days	* EHTR
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) QUEENSWAY SEWER SYSTEM	E298	26-Sep-2022	04-Oct-2022				09-Oct-2022	28 days	13 days	1
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid) QUEENSWAY SEWER SYSTEM	E366	26-Sep-2022	04-Oct-2022				05-Oct-2022	28 days	9 days	1
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) QUEENSWAY SEWER SYSTEM	E372-U	26-Sep-2022	04-Oct-2022				05-Oct-2022	28 days	9 days	V
Physical Tests : TSS by Gravimetry										
HDPE QUEENSWAY SEWER SYSTEM	E160	26-Sep-2022					03-Oct-2022	7 days	7 days	~

Legend & Qualifier Definitions

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluatio	n: × = QC freque	ency outside spe	ecification; 🗸 = 0	QC frequency wit	hin specification.
Quality Control Sample Type			Co	ount	Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Ammonia by Fluorescence	E298	679307	1	19	5.2	5.0	✓
Biochemical Oxygen Demand - 5 day	E550	675761	1	20	5.0	5.0	✓
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	692367	1	3	33.3	5.0	✓
Total Nitrogen by Colourimetry	E366	679306	1	16	6.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	679308	1	19	5.2	5.0	✓
TSS by Gravimetry	E160	677536	1	10	10.0	5.0	✓
Laboratory Control Samples (LCS)							
Ammonia by Fluorescence	E298	679307	1	19	5.2	5.0	1
Biochemical Oxygen Demand - 5 day	E550	675761	1	20	5.0	5.0	✓
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	692367	1	3	33.3	5.0	✓
Total Nitrogen by Colourimetry	E366	679306	1	16	6.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	679308	1	19	5.2	5.0	✓
TSS by Gravimetry	E160	677536	1	10	10.0	5.0	✓
Method Blanks (MB)							
Ammonia by Fluorescence	E298	679307	1	19	5.2	5.0	✓
Biochemical Oxygen Demand - 5 day	E550	675761	1	20	5.0	5.0	✓
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	692367	1	3	33.3	5.0	✓
Total Nitrogen by Colourimetry	E366	679306	1	16	6.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	679308	1	19	5.2	5.0	✓
TSS by Gravimetry	E160	677536	1	10	10.0	5.0	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	679307	1	19	5.2	5.0	✓
Total Nitrogen by Colourimetry	E366	679306	1	16	6.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	679308	1	19	5.2	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Vancouver -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters
	Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
Ammonia by Fluorescence	E298	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	Vancouver -			This method is approved under US EPA 40 CFR Part 136 (May 2021)
	Environmental			
Total Nitrogen by Colourimetry	E366	Water	APHA 4500-P J (mod)	Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
	Vancouver -			
	Environmental			
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
	Vancouver -			
	Environmental			
Biochemical Oxygen Demand - 5 day	E550	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen
				depletion is measured using a dissolved oxygen meter.
	Vancouver -			
	Environmental			Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Nitrification inhibitor is added to
	Vancouver - Environmental			samples to prevent nitrogenous compounds from consuming oxygen resulting in only carbonaceous oxygen demand being reported by this method.
				Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Vancouver -			
	Environmental			
Digestion for Total Nitrogen in water	Environmental EP366	Water	APHA 4500-P J (mod)	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
		1		
	Environmental			

Page	: 6 of 6
Work Order	: VA22C3716 Amendment 1
Client	: Regional District of Kitimat-Stikine
Project	Queensway Sewer

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order	VA22C3716	Page	: 1 of 4
Amendment	÷1		
Client	: Regional District of Kitimat-Stikine	Laboratory	: Vancouver - Environmental
Contact	Nicole Lavoie	Account Manager	: Amber Springer
Address	:# 300 - 4545 Lazelle Avenue	Address	8081 Lougheed Highway
	Terrace BC Canada V8G 4E1		Burnaby, British Columbia Canada V5A 1W9
Telephone		Telephone	+1 604 253 4188
Project	: Queensway Sewer	Date Samples Received	: 30-Sep-2022 11:55
PO	:	Date Analysis Commenced	:01-Oct-2022
C-O-C number	:	Issue Date	: 17-Oct-2022 15:12
Sampler	:		
Site	:		
Quote number	: VA22-RDKS100-001		
No. of samples received	:1		
No. of samples analysed	:1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Caitlin Macey	Team Leader - Inorganics	Vancouver Inorganics, Burnaby, British Columbia
Miles Gropen	Department Manager - Inorganics	Vancouver Inorganics, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 677536)										
VA22C3158-001	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	112	118	5.22%	20%	
Anions and Nutrient	ts (QC Lot: 679306)										
VA22C3438-001	Anonymous	nitrogen, total	7727-37-9	E366	0.030	mg/L	0.088	0.086	0.002	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 679307)										
FJ2202696-003	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0064	0.0072	0.0008	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 679308)										
FJ2202696-003	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Aggregate Organics	(QC Lot: 675761)										
FJ2202792-001	Anonymous	biochemical oxygen demand [BOD]		E550	2.0	mg/L	<2.0	<2.0	0.0%	30%	
Aggregate Organics	(QC Lot: 692367)										
VA22C4426-001	Anonymous	carbonaceous biochemical oxygen demand [CBOD]		E555	2.0	mg/L	<2.0	<2.0	0.0%	30%	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

CAS Number Method		LOR	Unit	Result	Qualifier
E160		3	mg/L	<3.0	
7727-37-9 E366		0.03	mg/L	<0.030	
7664-41-7 E298		0.005	mg/L	<0.0050	
7723-14-0 E372-U		0.002	mg/L	<0.0020	
E550		2	mg/L	<2.0	
E555		2	mg/L	<2.0	
	E160 7727-37-9 E366 7664-41-7 E298 7723-14-0 E372-U E550	7727-37-9 E366 7664-41-7 E298 7723-14-0 E372-U E550	E160 3 7727-37-9 E366 0.03 7664-41-7 E298 0.005 7723-14-0 E372-U 0.002 E550 2	E160 3 mg/L 7727-37-9 E366 0.03 mg/L 7664-41-7 E298 0.005 mg/L 7723-14-0 E372-U 0.002 mg/L E550 2 mg/L	Image: marked bit in the second se

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	-Matrix: Water						Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Recovery Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Physical Tests (QCLot: 677536)												
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	98.5	85.0	115				
Anions and Nutrients (QCLot: 679306)						1						
nitrogen, total	7727-37-9	E366	0.03	mg/L	0.5 mg/L	101	75.0	125				
Anions and Nutrients (QCLot: 679307)												
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	91.6	85.0	115				
Anions and Nutrients (QCLot: 679308)												
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	83.9	80.0	120				
Aggregate Organics (QCLot: 675761)						1						
biochemical oxygen demand [BOD]		E550	2	mg/L	198 mg/L	97.3	85.0	115				
Aggregate Organics (QCLot: 692367)												
carbonaceous biochemical oxygen demand [CBOD]		E555	2	mg/L	198 mg/L	105	85.0	115				

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water	p-Matrix: Water					Matrix Spike (MS) Report					
					Spi	ke	Recovery (%)	Recovery	Recovery Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Anions and Nutri	ents (QCLot: 679306)										
VA22C3713-001	Anonymous	nitrogen, total	7727-37-9	E366	1.92 mg/L	2 mg/L	96.1	70.0	130		
Anions and Nutri	ents (QCLot: 679307)										
VA22C3713-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0911 mg/L	0.1 mg/L	91.1	75.0	125		
Anions and Nutri	Anions and Nutrients (QCLot: 679308)										
VA22C3438-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0474 mg/L	0.05 mg/L	94.9	70.0	130		

Chain of Custody (COC) / Analytical Request Form

Affix ALS bar	code labe	here

(lab use only)

COC Number: 17 -

Page

of

	e	· .
(ALS)	Envira	nmentai

Canada Toli Free: 1 800 668 9878

	www.alsglobal.com				and the second			** • •									the first states				
Report To	Contact and company name below will appe	ar on the final report		Report Format	/ Distribution			Select S	ervice	Leval	Below -	Contact	your AV	to co	nfirm ali	E&P TAT	's (surc	harges	may a	pply)	
Company:	Regional District of Kitimat-Stikine		Select Report F	ormat: 🔽 \ PDF [EXCEL [] ED	D (DIGITAL)		Regu	lar (R		Standard	TAT if n	ceived by	3 pm -	business	days - no s	urcharge	s apply			
Contact:	Nicole Lavoie		Quality Control	(QC) Report with Re	eport 🗹 YES			4 day [P4-20	%] [].		Busin	ess di	ay (E1 -	100%]					Ξ
Phone:	250-615-6100		Compare Resu	its to Criteria on Report				3 day [P3-25	%] [ame Ds	iy, We	ekend	or Statu	ory ho	iliday (i	22 -2C	00%	Ċ
	Company address below will appear on the fina	al report	Select Distributi	on: 🗹 EMAIL	MAIL 🗋 I	FAX	ta ta	2 day [P2-50	%] []	₽ (aborat	ory o	pening	iees ma	epply	11			السا
Street:	4545 Lazelle Avenue		Email 1 or Fax	enviro.dept@rdks.	bc.ca		D	tte and "	'ime Re	quired	for all CA	P TATe:									
City/Province:	Тептасе/ВС		Emali 2	ckerr@rdks.bc.ca;	jkunjumon@rdks	s.bc.ca	For test	a that can	nat be p	entorme	d accordin	g to the s	nvice leve	l usiacti	d, you will	be contact	ed,				
Postal Code:	V8G4E1		Email 3	pmiller@rdks.bc.ca	; jlacrolx@rdks.t	DC.CA							Analys	is Re	quest						
invoice To	Same as Report To] NO		Invoice Dis	tribution		·		ndicate	Filtered	(F), Pres	erved (P)	or Filtere	d and F	reserved	(F/P) balov	v			etail	
	Copy of Invoice with Report 🛛 YES] NO (Select Invoice D	Distribution: 🗹 EM	AIL MAIL	FAX		ΡΡ	P								-			er del	
Company:	Regional District of Kitimat-Stikine		Email 1 or Fax	anne-maries@rdka	s.bc.ca				~ ¹											fr.	
Contact:	Nicole Lavoie		Email 2	enviro.dept@rdks.	bc.ca			1	(Junger)	Am ann				Ι.						de la	
	Project information		Oil	and Gas Required	Fleids (cliant u	189)				2 2						1		1		Do.	
ALS Account #	#/Quote #: VA22-RDKS100-00)1	AFE/Cost Center:		PO#					9	-									<u>d</u>	
Job #:	Queensway Sewer		Major/Minor Code:		Routing Code:			8									· .				ERS
PO / AFE:	·····		Requisitioner:					5		3 2										с) В	N
LSD:			Location:				Ţ.	ě l	2										5	nop D	1 Š
ALS Lab Wor	rk Order # (lab use only):		ALS Contact:		Sampler:		Gravim	a (by Fluores	lotal Nitrogen (b	inel Oron				-					SAMPLES ON HOLD	la hazal	NUMBER OF CONTAINER
ALS Sample #	Sample identification	and/or Coordinates		Date	Time		à	Ammonia				·		1			. 5		2	ple	B
(lab use only)	(This description will a	opear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	155	ξ.				<u>г</u>				leion	÷		NS	Samp	1 S
1	GUEENSWAY SEWER	SNSTEM		26 09 22	12:00	Effluent	/	$\overline{\mathbf{A}}$	7	10	7	Env	ironm	ent	al Div	191011	-				
	Curatostini ochoce		6 · ·	W 0165				-	_		-	Var	icouv	er	Dofere	nce					
l		· · · · · · · · · · · · · · · · · · ·						<u> </u>	-		-		Vork O		Č Q	^{nce} 716	5	┿╌┨	\rightarrow		
		<u></u>	· · · · · · · · ·		<u></u>				-+-				VA	22	US US	115	-	┿─┥			
		<u>.</u>	· · · · ·			······································	┠่				_						L -	+			
					4.1									1. 1	باللغية						
		· · · · ·	•		-						T.			b)•(
		· ·		·	1				-	-	-H			Y. I	11 11	3 - 11	1				
							╞╴┦							1.41		ון הי	11				
						<u> </u>					_			1. T. I			••				L.
	<u> </u>	·	· · · · · · · · · · · · · · · · · · ·	·								т	lephone	; +1€	604 253 4	188					
	1				l									_		- t	1				
		· · · · ·							-	Ţ	\Box	n• T	1								
	Field Blank						1.					1.1						+-+			
		Special instructions / Sp	ecify Criteria to a	dd on report by cilc	king on the drap-	down list below	┟┈┈┶┺			S	AMPLE	COND	ITION A	SRE	CEIVED	(lab us	a only)	البنيوكم	b		ر بر میں اور
Drinking) Water (DW) Samples' (client use)			troale COC only)			Froze	n		1		SIF O	servati	วกร	Yes			No		Ľ	
Are samples tak	ten from a Regulated DW System?	British Columbia Approv	ed and Working	Water Quality Guid	lelines (MAY, 20	15)	Ice Pa	acks]		e Cub	es 🔲	Custo	iy seal i	nlact	Yes			No	ı	Ē	
	YES 🔽 NO							ng Initie			·	•	-								
Are samples for	r human consumption/ use?							INIT	IAL CO	OLER	EMPERA	TURES	c	T	• F	INAL COC	LER TEN	IPERATI	JRES 9	0 0	Σ
	YES V NO	•					5.	2										1		-1	5
 	SHIPMENT RELEASE (client use)		INFULAL SHIPMEN	RECEPTION (ab use only)		-				FINAL	SHIPME	NT R	ECEPTI	ON (lab	use on	ily)		-+-	
Released by:	Date:	Time:	Received by:	11/2.0.7	Date: VI	. 77	Time:		Receiv	ed by:			Di	ite:	1	<u></u>		1	Time:	~	
Hann	wh Shinton Sept. 28	.2022	(MMYS		per				t¥			0	13	212	<u>Y</u>			Ŀ	5	<u>ک</u>
REFER TO BAC	K PAGE FOR ALS LOCATIONS AND SAMPLING	G INFORMATION		WHI	TE - LABORAT JR	Y COPY YEL	LOW-	CLIENT	COPY	V (\				11 1	- 1 -	-			TT	8E में 20	N7 FRONT

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS						
Work Order	· VA22C5829	Page	: 1 of 3			
Client	: Regional District of Kitimat-Stikine	Laboratory	: Vancouver - Environmental			
Contact	: Nicole Lavoie	Account Manager	: Amber Springer			
Address	: # 300 - 4545 Lazelle Avenue	Address	: 8081 Lougheed Highway			
	Terrace BC Canada V8G 4E1		Burnaby BC Canada V5A 1W9			
Telephone	:	Telephone	: +1 604 253 4188			
Project	: Queensway Sewer	Date Samples Received	: 25-Oct-2022 21:30			
PO	·	Date Analysis Commenced	: 27-Oct-2022			
C-O-C number		Issue Date	: 03-Nov-2022 14:31			
Sampler	:					
Site						
Quote number	: VA22-RDKS100-001					
No. of samples received	: 1					
No. of samples analysed	: 1					

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
mg/L	milligrams per litre
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Water									
(Matrix: Water)					SEWER				
	24-Oct-2022 10:00								
Analyte	CAS Number	Method	LOR	Unit	VA22C5829-001				
					Result				
Physical Tests									
pH		E108	0.10	pH units	7.76				
solids, total suspended [TSS]		E160	3.0	mg/L	13.7				
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	34.4				
nitrogen, total	7727-37-9	E366	0.030	mg/L	31.8				
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	4.71				
Aggregate Organics	Aggregate Organics								
biochemical oxygen demand [BOD]		E550	2.0	mg/L	7.8				
carbonaceous biochemical oxygen demand [CBOD]		E555	2.0	mg/L	8.1				

Please refer to the General Comments section for an explanation of any qualifiers detected.

ALS Canada Ltd.

QUALITY CONTROL INTERPRETIVE REPORT					
Work Order	:VA22C5829	Page	: 1 of 7		
Client	Regional District of Kitimat-Stikine	Laboratory	: Vancouver - Environmental		
Contact	: Nicole Lavoie	Account Manager	: Amber Springer		
Address	:# 300 - 4545 Lazelle Avenue	Address	: 8081 Lougheed Highway		
	Terrace BC Canada V8G 4E1		Burnaby, British Columbia Canada V5A 1W9		
Telephone	:	Telephone	: +1 604 253 4188		
Project	: Queensway Sewer	Date Samples Received	: 25-Oct-2022 21:30		
PO	:	Issue Date	: 03-Nov-2022 14:31		
C-O-C number	:				
Sampler	:				
Site	:				
Quote number	: VA22-RDKS100-001				
No. of samples received	:1				

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

No. of samples analysed

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

:1

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches) Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Aatrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding Tin
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Biochemical Oxygen Demand - 5 day										
HDPE [BOD HT 3d] QUEENSWAY SEWER	E550	24-Oct-2022					27-Oct-2022	3 days	3 days	✓
Aggregate Organics : Biochemical Oxygen Demand (Carbonaceous) - 5 day								I		
HDPE [BOD HT 3d] QUEENSWAY SEWER	E555	24-Oct-2022					27-Oct-2022	3 days	3 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) QUEENSWAY SEWER	E298	24-Oct-2022	28-Oct-2022				01-Nov-2022	28 days	8 days	✓
Anions and Nutrients : Total Nitrogen by Colourimetry										
Amber glass total (sulfuric acid) QUEENSWAY SEWER	E366	24-Oct-2022	28-Oct-2022				01-Nov-2022	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)								1		
Amber glass total (sulfuric acid) QUEENSWAY SEWER	E372-U	24-Oct-2022	28-Oct-2022				29-Oct-2022	28 days	5 days	✓
Physical Tests : pH by Meter										
HDPE QUEENSWAY SEWER	E108	24-Oct-2022	01-Nov-2022				01-Nov-2022	0.25 hrs	1.32 hrs	¥ EHTR-FM
Physical Tests : TSS by Gravimetry										
HDPE QUEENSWAY SEWER	E160	24-Oct-2022					27-Oct-2022	7 days	3 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluation	n: × = QC freque	ency outside sp	ecification; ✓ = 0	QC frequency wi	thin specification
Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Ammonia by Fluorescence	E298	720599	1	10	10.0	5.0	✓
Biochemical Oxygen Demand - 5 day	E550	717340	1	20	5.0	5.0	~
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	718238	1	4	25.0	5.0	~
pH by Meter	E108	725296	1	13	7.6	5.0	~
Total Nitrogen by Colourimetry	E366	720600	1	4	25.0	5.0	~
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	720598	1	7	14.2	5.0	~
TSS by Gravimetry	E160	718105	1	20	5.0	5.0	✓
Laboratory Control Samples (LCS)							
Ammonia by Fluorescence	E298	720599	1	10	10.0	5.0	✓
Biochemical Oxygen Demand - 5 day	E550	717340	1	20	5.0	5.0	✓
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	718238	1	4	25.0	5.0	✓
pH by Meter	E108	725296	1	13	7.6	5.0	~
Total Nitrogen by Colourimetry	E366	720600	1	4	25.0	5.0	~
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	720598	1	7	14.2	5.0	~
TSS by Gravimetry	E160	718105	1	20	5.0	5.0	✓
Method Blanks (MB)							
Ammonia by Fluorescence	E298	720599	1	10	10.0	5.0	1
Biochemical Oxygen Demand - 5 day	E550	717340	1	20	5.0	5.0	~
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	718238	1	4	25.0	5.0	✓
Total Nitrogen by Colourimetry	E366	720600	1	4	25.0	5.0	~
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	720598	1	7	14.2	5.0	~
TSS by Gravimetry	E160	718105	1	20	5.0	5.0	~
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	720599	1	10	10.0	5.0	1
Total Nitrogen by Colourimetry	E366	720600	1	4	25.0	5.0	~
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	720598	1	7	14.2	5.0	~

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
				at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Vancouver -			pH should be measured in the field within the recommended 15 minute hold time.
	Environmental			
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
				filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Vancouver -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
Ammonia by Fluorescence	E298	Water	Method Fialab 100,	Ammonia in water is determined by automated continuous flow analysis with membrane
			2018	diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	Vancouver -			This method is approved under US EPA 40 CFR Part 136 (May 2021)
	Environmental			
Total Nitrogen by Colourimetry	E366	Water	APHA 4500-P J (mod)	Total Nitrogen is determined colourimetrically using a discrete analyzer after heated
				persulfate digestion of the sample.
	Vancouver -			
	Environmental			
Total Phosphorus by Colourimetry (0.002	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated
mg/L)				persulfate digestion of the sample.
	Vancouver -			
	Environmental			
Biochemical Oxygen Demand - 5 day	E550	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen
				depletion is measured using a dissolved oxygen meter.
	Vancouver -			
	Environmental			Free chlorine is a negative interference in the BOD method; please advise ALS when
				free chlorine is present in samples.
Biochemical Oxygen Demand (Carbonaceous)	E555	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen
- 5 day				depletion is measured using a dissolved oxygen meter. Nitrification inhibitor is added to
	Vancouver -			samples to prevent nitrogenous compounds from consuming oxygen resulting in only
	Environmental			carbonaceous oxygen demand being reported by this method.
				Free chlorine is a negative interference in the BOD method; please advise ALS when
				free chlorine is present in samples.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Vancouver -			
	Environmental			
	Environmental			

Page Work Order	:	7 of 7 VA22C5829
Client	:	Regional District of Kitimat-Stikine
Project	:	Queensway Sewer

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for Total Nitrogen in water	EP366	Water	APHA 4500-P J (mod)	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
	Environmental			
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
	Environmental			

ALS Canada Ltd.

QUALITY CONTROL REPORT Work Order Page :VA22C5829 : 1 of 6 Client Regional District of Kitimat-Stikine Laboratory : Vancouver - Environmental Account Manager : Amber Springer Contact : Nicole Lavoie Address Address :# 300 - 4545 Lazelle Avenue :8081 Lougheed Highway Terrace BC Canada V8G 4E1 Burnaby, British Columbia Canada V5A 1W9 Telephone Telephone :+1 604 253 4188 Project Date Samples Received : 25-Oct-2022 21:30 : Queensway Sewer PO Date Analysis Commenced :27-Oct-2022 :----C-O-C number Issue Date :03-Nov-2022 14:27 -----Sampler ----Site · ____ Quote number :VA22-RDKS100-001 No. of samples received :1 No. of samples analysed :1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Inorganics, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report										
Laboratory sample ID	Client sample ID	Analyte	CAS Number Method		LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier					
Physical Tests (QC	Lot: 718105)															
KS2204050-001	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	10.7	9.7	1.0	Diff <2x LOR						
Physical Tests (QC	Lot: 725296)															
VA22C5966-001	Anonymous	рН		E108	0.10	pH units	7.00	7.02	0.285%	4%						
Anions and Nutrien	ts (QC Lot: 720598)															
VA22C5829-001	QUEENSWAY SEWER	phosphorus, total	7723-14-0	E372-U	0.200	mg/L	4.71	4.61	2.07%	20%						
Anions and Nutrien	ts (QC Lot: 720599)															
KS2204124-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR						
Anions and Nutrien	ts (QC Lot: 720600)															
KS2204124-001	Anonymous	nitrogen, total	7727-37-9	E366	0.030	mg/L	0.166	0.174	0.007	Diff <2x LOR						
Aggregate Organics	s (QC Lot: 717340)															
FJ2203032-001	Anonymous	biochemical oxygen demand [BOD]		E550	2.0	mg/L	<2.0	<2.0	0.0%	30%						
Aggregate Organics	Gige Contemporary (Contemporary 1975)															
VA22C6011-001	Anonymous	carbonaceous biochemical oxygen demand [CBOD]		E555	2.0	mg/L	<2.0	<2.0	0.0%	30%						

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 718105)						
solids, total suspended [TSS]		E160	3	mg/L	<3.0	
Anions and Nutrients (QCLot: 720598)						
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 720599)						
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 720600)						
nitrogen, total	7727-37-9	E366	0.03	mg/L	<0.030	
Aggregate Organics (QCLot: 717340)						
biochemical oxygen demand [BOD]		E550	2	mg/L	<2.0	
Aggregate Organics (QCLot: 718238)						
carbonaceous biochemical oxygen demand [CBOD]		E555	2	mg/L	<2.0	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report									
				Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Physical Tests (QCLot: 718105)											
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	92.5	85.0	115			
Physical Tests (QCLot: 725296)						·					
рН		E108		pH units	7 pH units	99.8	98.0	102			
Anions and Nutrients (QCLot: 720598)											
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	93.8	80.0	120			
Anions and Nutrients (QCLot: 720599)											
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	98.3	85.0	115			
Anions and Nutrients (QCLot: 720600)											
nitrogen, total	7727-37-9	E366	0.03	mg/L	0.5 mg/L	101	75.0	125			
Aggregate Organics (QCLot: 717340)											
biochemical oxygen demand [BOD]		E550	2	mg/L	198 mg/L	96.0	96.0 85.0				
Aggregate Organics (QCLot: 718238)											
carbonaceous biochemical oxygen demand [CBOD]		E555	2	mg/L	198 mg/L	97.5	85.0	115			

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report										
					Spi	ke	Recovery (%)	Recovery	Limits (%)						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration Target		MS	Low	High	Qualifier					
Anions and Nutri	ents (QCLot: 720598)														
VA22C5962-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0474 mg/L	0.05 mg/L	94.9	70.0	130						
Anions and Nutrients (QCLot: 720599)															
KS2204128-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0942 mg/L	0.1 mg/L	94.2	75.0	125						
Anions and Nutri	ents (QCLot: 720600)														
KS2204128-001	Anonymous	nitrogen, total	7727-37-9	E366	0.397 mg/L	0.4 mg/L	99.4	70.0	130						

Chain of Custody (COC) / Analytical

Request Form

COC Number: 17 -

Affix ALS barcode label here

(lab use only)

Page

SEPT 2017 PROV

Report To	www.alsglobal.com Contact and company name below will app	ry name below will appear on the final report Report Format / Distribution					Select Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply)														
Company:	Regional District of Kitimat-Stikina		Select Report Format: PDF EXCEL EDD (DIGITAL)					Regular [R] Standard TAT If received by 3 pm - business days - no surcharges apply													
Contact:	Nicole Lavoie		Quality Control (QC) Report with Report VES NO					Image: state of the s										<u> </u>			
Phone:	250-615-6100			uits to Criteria on Report	• –		124	3 day		-	• ·		Sam	e Dav. ¹	Wéekend	l or Stai	- tutory h	Ioliday (E2 -2(00%	
	Company address below will appear on the fir	nal report	Select Distribut		MAIL 🗌		151	1 7	day [P3-25%] [Same Day, Weekend or Statutory holiday [E2 -200%] day [P2-60%] [[[[Laboratory opening fees may apply]]												
Street:	4545 Lazelle Avenue		Email 1 of Fax	enviro.dept@rdks	bc.ca	<u> </u>	ا آ	Date an	si Time	Requi	red for	ali EGP T/	Ts:	T					•		
City/Province:	Теггасе/ВС		Email 2	ckerr@rdks.bc.ca		ks.bc.ca	For tes	ats that c	het can not be performed according to the service level selected, you will be contacted.												
Postal Code:	V8G4E1		Email 3	pmiller@rdks.bc.c	a; jlacroix@rdks	bc.ca		Analysis Request													
Invoice To	Same as Report To 🤄 YES	NO		Invoice D	stribution	· · ·		Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below													
	Copy of Invoice with Report I YES		Select Invoice	Distribution: 🗹 E	MAIL 🛄 MAIL (FAX	<u> </u>	P	P	P			1			TT				provide further det	
Company:	Regional District of Kitimat-Stikine		Email 1 or Fax	anne-maries@rdi	ks.bc.ca		1			ΰ£	ਵ	_								Ē	l l
Contact:	Nicole Lavoie		Email 2	enviro.dept@rdks	bc.ca		1		(T)	0.002	2 mg/L)) ·	1	1 _1	•	. L J	k.	I			
	Project Information		0	I and Gas Require	d Fields (client	: use)	1	ŀ	0.03mg/L)	νo	day		Er	iviron	menta	l Divi	ision			N N	
ALS Account	# / Quote #: VA22-RDKS100-0	001	AFE/Cost Center:		PO#					metr	5	1	Va	.ncou						đ	
Job #:	Queensway Sewer		Major/Minor Code:		Routing Code:	·]	8	imet	louri	Demand (1		Work (Order R	eferen	ce			- lear	ERS.
PO / AFE:	•		Requisitioner:					Fluorescence	Colourimetry	y Color	De			٧A	220	:58	329			1 2	VIN
LSD:			Location:				aty [lorei		kd) 2	Oxygen			_					НОГР	ê	EN O
ALS Lab Wo	rk Order # (lab use only):		ALS Contact:		Sampler:	Sampler:			Nitrogen (by	nordson	Biochemical Oxy					iii A			ES ON I	ls hazardous	NUMBER OF CONTAINERS
ALS Sample #	Sample Identification	n and/or Coordinates		Date	Time	Sample Type	TSS (by	Ammonia (by	N.	Total Pho	chen	į			% Y			•	SAMPL	Sample	Han Han
(lab use only)	(This description will	appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	TS	Į	Total	Tot	Bio				TA LUZ	2011		•	SA S	Sar	Ī
	QUEENSWAY SEW	ER. (A)		OCT-24/22	108	Effluent					•	Ĩ									
	QUEENSWAY SEW		· · · · · · · · · · · · · · · · · · ·	04.24/22									Tele	phone :	+ 1 604 25	3 41 88					
· · · ·		WER: (C)		OCT24/22			1					i `\.									
			· · · · · · · · · · · · · · · · · · ·	00.2112	1		+	+		•	<u> </u>		-					<u> </u>			
<u></u>							+	+	┠					┼─┼			<u> </u>				
					1	· ·		<u> </u>						╉╌╌┟			·		·	┣──┦	┢
· · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				_	ļ	<u> </u>		l			1. 1.		<u> </u>				ļ!	┢──
									j T	err	ace	Ship	pin	g	•						
				· ·	1				#)	С	oole	rs	Gr	ound			_			
			·····						#			arbo		Â	ir						
									#_	:	<u> </u>	and	uya								
					1		+	†	1					S S	FX		- 1	-+		<u></u>	<u>†</u>
						<u> </u>	+		<u></u> †	1	1		ı	n i	~ 1 *	۱ - ۱	ć-				
	Field Blank						+		1	1	CA1		MDIT		RECEIVE	D (lab)	ueo anh		I		L
Drinking	Water (DW) Samples ¹ (client use)	Special Instructions / S		add on report by cli ctronic COC only)	cking on the drop	o-down list below	Froz			П	374			rvations				No		<u>-</u>	-
Are samples tai	en from a Regulated DW System?	British Columbia Appro			idelines (MAY, 2	015)			1- FT .		lubes						_	No.		Ē	
-						Cooling Initiated															
	human consumption/ use?										ER TEN	PERATUR	E8 °C			FINAL CO	OOLER T	EMPERAT	URES	•C	-
	YES I NOA	ς							<u> </u>						0					Ē	<u> </u>
	SHIPMENT RELEASE (client use	a)	T	INITIAL SHIPMEN	TRECEPTION	(lab use only)			<u> </u>			FIN	AL SH	PMENT	RECEPT	TION /Is	b use o	only)		<u> </u>	مسيعين
Released by:	NAL Data:	I Time:	Received by:	THE PLANE WITH MEL	Dete		Time	e:	FINAL SHIPMENT RECEPTION (lab use only) e: Received by: Date: Tir							Time	»:	•••••			
fin	JWW Date OCT. 24	1202L-	nº.	· · · · · ·	01.24	[22	2:2	25			*	<u> </u>			207	25			12	212	D

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

YELLOW - CLIENT COPY WHITE - LABORATORY COPY

Failure to complete all portions of this form may delay analysis, Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the while - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

ALS Canada Ltd.

	CERTI	FICATE OF ANALYSIS		
Work Order	: VA22C7659	Page	: 1 of 3	
Client	: Regional District of Kitimat-Stikine	Laboratory	: Vancouver - Environmental	
Contact	: Nicole Lavoie	Account Manager	: Amber Springer	
Address	: # 300 - 4545 Lazelle Avenue	Address	: 8081 Lougheed Highway	
Telephone	Terrace BC Canada V8G 4E1	Telephone	Burnaby BC Canada V5A 1W9 +1 604 253 4188	
Project	: Queensway Sewer	Date Samples Received	: 15-Nov-2022 12:10	
PO	:	Date Analysis Commenced	: 16-Nov-2022	
C-O-C number	:	Issue Date	: 24-Nov-2022 16:45	
Sampler	:			
Site	:			
Quote number	: VA22-RDKS100-001			
No. of samples received	: 1			
No. of samples analysed	: 1			

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
mg/L	milligrams per litre
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Effluent			Cl	ient sample ID	Queensway	 	
(Matrix: Water)					Sewer		
	Client sampling date / time			14-Nov-2022 11:30	 	 	
Analyte	CAS Number	Method	LOR	Unit	VA22C7659-001	 	
					Result	 	
Physical Tests							
рН		E108	0.10	pH units	7.95	 	
solids, total suspended [TSS]		E160	3.0	mg/L	6.5	 	
Anions and Nutrients							
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	33.5	 	
nitrogen, total	7727-37-9	E366	0.030	mg/L	34.8	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	4.87	 	
Aggregate Organics							
biochemical oxygen demand [BOD]		E550	2.0	mg/L	6.1	 	
carbonaceous biochemical oxygen demand [CBOD]		E555	2.0	mg/L	11.8	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

ALS Canada Ltd.

	QUALITY CONTROL INTERPRETIVE REPORT								
Work Order	:VA22C7659	Page	: 1 of 7						
Client	Regional District of Kitimat-Stikine	Laboratory	: Vancouver - Environmental						
Contact	: Nicole Lavoie	Account Manager	: Amber Springer						
Address	:# 300 - 4545 Lazelle Avenue	Address	8081 Lougheed Highway						
	Terrace BC Canada V8G 4E1		Burnaby, British Columbia Canada V5A 1W9						
Telephone	:	Telephone	: +1 604 253 4188						
Project	: Queensway Sewer	Date Samples Received	: 15-Nov-2022 12:10						
PO	:	Issue Date	: 24-Nov-2022 16:45						
C-O-C number	:								
Sampler	:								
Site	:								
Quote number	: VA22-RDKS100-001								
No. of samples received	:1								
No. of samples analysed	:1								

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers **Outliers : Quality Control Samples**

- No Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches) Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, gualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

latrix: Water					Ev	aluation: × =	Holding time excee	edance ; 🔹	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Extraction / Preparation				Analys	sis		
Container / Client Sample ID(s)			Preparation	Holding Times		Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Biochemical Oxygen Demand - 5 day										
HDPE [BOD HT 3d]										
Queensway Sewer	E550	14-Nov-2022					16-Nov-2022	3 days	2 days	1
Aggregate Organics : Biochemical Oxygen Demand (Carbonaceous) - 5 day										
HDPE [BOD HT 3d]										
Queensway Sewer	E555	14-Nov-2022					17-Nov-2022	3 days	3 days	1
Anions and Nutrients : Ammonia by Fluorescence				1						
Amber glass total (sulfuric acid)	5000	44. No. 0000					00 NI 0000		<u>.</u>	,
Queensway Sewer	E298	14-Nov-2022	20-Nov-2022				23-Nov-2022	28 days	9 days	1
Anions and Nutrients : Total Nitrogen by Colourimetry								1		
Amber glass total (sulfuric acid) Queensway Sewer	E366	14-Nov-2022	20-Nov-2022				22-Nov-2022	28 days	8 days	1
Queensway Sewer	E300	14-1100-2022	20-1100-2022				22-INOV-2022	20 uays	o uays	•
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L) Amber glass total (sulfuric acid)		1 1								
Queensway Sewer	E372-U	14-Nov-2022	20-Nov-2022				22-Nov-2022	28 days	8 davs	1
			201101 2022					20 44,0	o uu jo	
Physical Tests : pH by Meter								I		
HDPE										
Queensway Sewer	E108	14-Nov-2022	16-Nov-2022				16-Nov-2022	0.25	4.25	*
								hrs	hrs	EHTR-FM
Physical Tests : TSS by Gravimetry				1	I I			1	I I	
HDPE										
Queensway Sewer	E160	14-Nov-2022					17-Nov-2022	7 days	3 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluatio	n: × = QC freque	ency outside sp	ecification; ✓ = 0	QC frequency wi	hin specificatio
Quality Control Sample Type			Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Ammonia by Fluorescence	E298	750475	1	14	7.1	5.0	✓
Biochemical Oxygen Demand - 5 day	E550	745243	1	17	5.8	5.0	~
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	747896	1	9	11.1	5.0	~
pH by Meter	E108	745543	1	5	20.0	5.0	~
Total Nitrogen by Colourimetry	E366	750473	1	13	7.6	5.0	~
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	750474	1	17	5.8	5.0	~
TSS by Gravimetry	E160	745993	1	18	5.5	5.0	✓
Laboratory Control Samples (LCS)							
Ammonia by Fluorescence	E298	750475	1	14	7.1	5.0	✓
Biochemical Oxygen Demand - 5 day	E550	745243	1	17	5.8	5.0	~
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	747896	1	9	11.1	5.0	✓
pH by Meter	E108	745543	1	5	20.0	5.0	✓
Total Nitrogen by Colourimetry	E366	750473	1	13	7.6	5.0	~
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	750474	1	17	5.8	5.0	✓
TSS by Gravimetry	E160	745993	1	18	5.5	5.0	~
Method Blanks (MB)							
Ammonia by Fluorescence	E298	750475	1	14	7.1	5.0	✓
Biochemical Oxygen Demand - 5 day	E550	745243	1	17	5.8	5.0	~
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	747896	1	9	11.1	5.0	✓
Total Nitrogen by Colourimetry	E366	750473	1	13	7.6	5.0	~
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	750474	1	17	5.8	5.0	~
TSS by Gravimetry	E160	745993	1	18	5.5	5.0	~
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	750475	1	14	7.1	5.0	✓
Total Nitrogen by Colourimetry	E366	750473	1	13	7.6	5.0	~
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	750474	1	17	5.8	5.0	~

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results,
	Vancouver -			pH should be measured in the field within the recommended 15 minute hold time.
	Environmental			
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
				filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Vancouver -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Ammonia by Fluorescence	E298	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	Vancouver -		20.0	This method is approved under US EPA 40 CFR Part 136 (May 2021)
	Environmental			
Total Nitrogen by Colourimetry	E366	Water	APHA 4500-P J (mod)	Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
	Vancouver -			
	Environmental			
Total Phosphorus by Colourimetry (0.002	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated
mg/L)				persulfate digestion of the sample.
	Vancouver -			
	Environmental			
Biochemical Oxygen Demand - 5 day	E550	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter.
	Vancouver -			
	Environmental			Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.
Biochemical Oxygen Demand (Carbonaceous)	E555	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen
- 5 day				depletion is measured using a dissolved oxygen meter. Nitrification inhibitor is added to
	Vancouver -			samples to prevent nitrogenous compounds from consuming oxygen resulting in only
	Environmental			carbonaceous oxygen demand being reported by this method.
				Free chlorine is a negative interference in the BOD method; please advise ALS when
				free chlorine is present in samples.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Vancouver -			
	Environmental			

Page Work Order	:	7 of 7 VA22C7659
Client	:	Regional District of Kitimat-Stikine
Project	:	Queensway Sewer

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for Total Nitrogen in water	EP366	Water	APHA 4500-P J (mod)	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
	Environmental			
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
	Environmental			

ALS Canada Ltd.

QUALITY CONTROL REPORT Work Order Page :VA22C7659 : 1 of 6 Client Regional District of Kitimat-Stikine Laboratory : Vancouver - Environmental Account Manager : Amber Springer Contact : Nicole Lavoie Address Address :# 300 - 4545 Lazelle Avenue :8081 Lougheed Highway Terrace BC Canada V8G 4E1 Burnaby, British Columbia Canada V5A 1W9 Telephone Telephone :+1 604 253 4188 Project Date Samples Received :15-Nov-2022 12:10 : Queensway Sewer PO **Date Analysis Commenced** :16-Nov-2022 :----C-O-C number Issue Date :24-Nov-2022 16:46 -----Sampler ----Site · ____ Quote number :VA22-RDKS100-001 No. of samples received :1 No. of samples analysed :1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Inorganics, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	atory Duplicate (D	UP) Report		,
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	C Lot: 745543)										
VA22C7655-001	Anonymous	рН		E108	0.10	pH units	8.01	7.97	0.501%	4%	
Physical Tests (QC	C Lot: 745993)										
VA22C7627-008	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	0	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 750473)										
KS2204340-001	Anonymous	nitrogen, total	7727-37-9	E366	1.50	mg/L	31.9	32.3	1.09%	20%	
Anions and Nutrier	nts (QC Lot: 750474)										
VA22C7659-001	Queensway Sewer	phosphorus, total	7723-14-0	E372-U	0.200	mg/L	4.87	4.91	0.802%	20%	
Anions and Nutrier	nts (QC Lot: 750475)										
VA22C7659-001	Queensway Sewer	ammonia, total (as N)	7664-41-7	E298	0.250	mg/L	33.5	33.7	0.487%	20%	
Aggregate Organic	s (QC Lot: 745243)										
FJ2203188-002	Anonymous	biochemical oxygen demand [BOD]		E550	2.0	mg/L	10.8	11.1	2.7%	30%	
Aggregate Organic	s (QC Lot: 747896)										
KS2204315-001	Anonymous	carbonaceous biochemical oxygen demand [CBOD]		E555	2.0	mg/L	5.2	5.0	3.9%	30%	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 745993)						
solids, total suspended [TSS]		E160	3	mg/L	<3.0	
Anions and Nutrients (QCLot: 750473)						
nitrogen, total	7727-37-9	E366	0.03	mg/L	<0.030	
Anions and Nutrients (QCLot: 750474)						
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 750475)						
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Aggregate Organics (QCLot: 745243)						
biochemical oxygen demand [BOD]		E550	2	mg/L	<2.0	
Aggregate Organics (QCLot: 747896)						
carbonaceous biochemical oxygen demand [CBOD]		E555	2	mg/L	<2.0	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	-Matrix: Water							Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	ery (%) Recovery Limits (%)								
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier						
Physical Tests (QCLot: 745543)															
рН		E108		pH units	7 pH units	100	98.0	102							
Physical Tests (QCLot: 745993)															
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	101	85.0	115							
Anions and Nutrients (QCLot: 750473)															
nitrogen, total	7727-37-9	E366	0.03	mg/L	0.5 mg/L	96.2	75.0	125							
Anions and Nutrients (QCLot: 750474)															
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.05 mg/L	92.6	80.0	120							
Anions and Nutrients (QCLot: 750475)															
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	104	85.0	115							
Aggregate Organics (QCLot: 745243)															
biochemical oxygen demand [BOD]		E550	2	mg/L	198 mg/L	97.9	85.0	115							
Aggregate Organics (QCLot: 747896)															
carbonaceous biochemical oxygen demand [CBOD]		E555	2	mg/L	198 mg/L	100	85.0	115							

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water			Matrix Spike (MS) Report								
					Spi	ke	Recovery (%)	Recovery			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Anions and Nutri	ents (QCLot: 750473)										
KS2204342-001	Anonymous	nitrogen, total	7727-37-9	E366	ND mg/L	4 mg/L	ND	70.0	130		
Anions and Nutri	ents (QCLot: 750474)										
VA22C7683-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0458 mg/L	0.05 mg/L	91.7	70.0	130		
Anions and Nutrients (QCLot: 750475)											
VA22C7683-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.105 mg/L	0.1 mg/L	105	75.0	125		

Page	:
Work Order	:
Client	:
Project	:

6 of 6 VA22C7659 Regional District of Kitimat-Stikine Queensway Sewer

Chain of Custody (COC) / Analytical

Request Form

Affix ALS barcode label here (lab use only)

COC Number: 1	7 -
---------------	-----

Page of

SEPT 2017 FRONT

. ALS) Environmental www.alsglobal.com

Canada	Toll Free:	1	800 66	8 9878	

Report To	Contact and company name below	will appear on the final report		Report Format / Distribution			Select Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply) Regular [R] Standard TAT if received by 3 pm - business days - no surcharges; apply]									
Company:	Regional District of Kitimat-Stikine	· · · · · · · · · · · · · · · · · · ·	Select Report F	ormat: 🖾 PDF 🗵	EXCEL 🛛 EDD	(DIGITAL)		Re	gular	[R] 🗹	Stan	dard T/	AT if re	ceived by	/ 3 pm -	businer	iss days	- no sur	charges a	apply				1
Contact:	Nicole Lavoie		Quality Control	(QC) Report with R	eport 🖾 🗆	NO		4 da	y (P4-	20%]			à	1 Bus	siness	day ([E1 - 1	100%]					0	1
Phone:	250-615-6100		Compare Result	Is to Criteria on Report -	provide details below	w if box checked	PRIORITY Business Day	3 da	y [P3-	25%]	D		DORD	Same	Day, V	Neek	end o	r Statu	utory he	oliday [(E2 -		D	
	Company address below will appear or	n the final report	Select Distribut	ion: 🖻 Email	D MAIL D FAX	K	PR (Bua)	2 da	y [P2-	50%]			Υ.							y apply			Ц	
Street:	4545 Lazelle Avenue	·····	Email 1 or Fax	enviro.dept@rdks.	.bc.ca		1	Date and Time Required for all E&P TATS:						·		1								
City/Province:	Terrace/BC	· · · · · · · · · · · · · · · · · · ·	Email 2	ckerr@rdks.bc.ca;	jkunjumon@rdk	s.bc.ca	For tes	its that	can not	be perfe	ormodia	ccordir	ng to th	e service	level sole	acted, y	you will t	be contac	:ted.					1
Postal Code:	V8G4E1		Email 3	pmiller@rdks.bc.ca	a; jlacroix@rdks.	.bc.ca								Ала	lysis R	eque	est							1
Invoice To	Same as Report To	ES D NO		Invoice Dis	stribution .		Τ		Indic	ate Filt	ered (F). Pres	erved (P) or Filt	ered and	1 Prese	erved (F	F/P) belo	w		\square	alls		1
	Copy of Invoice with Report	ES D NO	Select Invoice I	Distribution: 🖻 EMA	IL D MAIL D F.	AX	1-	Р	Р	Р				ΓΤ		Т				\top		r details		
Company:	Regional District of Kitimat-Stikine		Email 1 or Fax	anne-maries@rdk	s.bc.ca					mg/t	pu			ΓΤ								further		1
Contact:	Nicole Lavoie		Email 2	enviro.dept@rdks.	.bc.ca				(T)	0.002	Demand										1			
	Project Information		Oil	and Gas Required	d Fields (client	use)			D3m	y 0.0	L L L L L L L L L L L L L L L L L L L		Į		1						1	rovide		
ALS Account #	# / Quote #: VA22-RDKS	\$100-001	AFE/Cost Center:		PO#				<u>م</u>	metr	Oxygen											e l		
Job #:	Queensway Sewer		Major/Minor Code		Routing Code:				Colourimetry 0.03mg/L)	in o											1	(please	ERS	
PO/AFE:		•	Requisitioner:		<u> </u>				lor.	S.	ê mi												AIN	
LSD:			Location:				etry		Ŭ d	d) s	Biochemical										ğ	- dou	CONTAINERS	
ALS Lab Wor	rk Order # (lab use only): 🏾 🔭	359	ALS Contact:		Sampler:		Gravim	monía	Nitrogen (k	osphoru	Carbonaceous E		Day)								SAMPLES ON HOL	is hazardous	Ľ	
ALS Sample #	Sample Identif	ication and/or Coordinates	- A	Date	Time	1	∎ <u>è</u>	Total Am	Nit	er Pho	Broo		9								P	ed	1861	
(lab use only)	(This description	on will appear on the report)		(dd-mmm-yy)	(hb:mm)	Sample Type	TSS	Tota	Total	Totai	Car	语	00 00								SAN	Sample is I	NUMBER	
	Queensway Sewer		• -	14/11/22	11530am	Effluent	R	R	R	R	R	R	R		T	\neg							AS PO	17
	QUEDUSWAY SEWER	B)		14/11/22	US30Am	14	1										_	•				Ť		1-
	QUEENSWAY SEWER (\	14/11/22	11 530AM	1¢	1					· ·								++				1
		Environmental	Division	<u> </u>	11 50.111	· · · · ·								<u>├</u> ─-						1				1
			Difficient		ι	<u>+</u>	-									-				+	<u> </u>			1
		Vancouver Work Order Re	ference	F		<u> </u>	+	ļ		L		nir	na							+	<u> </u>	— ł		1
	· · · · · · · · · · · · · · · · · · ·	VA22C	7659	<u> </u>			╇	[er	rac	e S	mp	ηhu	'9	~ ~~		чΓ	Ξ.							4
ļ		VALLV						#	¥.	Co	oole	ers		Gro		- 1. 7		1			i — I			1
		1月11日日子間の。 1月1日日子間の。	MY5. 🖬 (()		·.			#		· c	arb	٥u١	/S	Air		5	21							
		11 XI				-		#		- 00		· · ·		SF	X	ſ								
			-11 52-12 1111	1								• •		, U	<i>.</i>			1				- 1		1
			LUX 101111	÷			1		1- ×	[-	Г	[1			1		\top	+-			\rightarrow		1
	Field Blank					+					· · ·			-								+		1
		Telephone : +1 604 2	53 4188	an coport by all	Line on the dreep	down lint halaw	+	1			SAN		CON			ECEL		lab use	e only)	┶━┛				1
Drinking	Water (DW) Samples ¹ (client use)			I on report by clic stronic COC only)	king on the arop-	-down list below	Froz	en	_					Observa			res		<u></u>	No			—	1
Are samples taken from a Regulated DW System? Federal Wastewater Systems Effluent Regulations			egulations (JUN, 20	12)				П		ubes			ody sea		t Y	Yes	$\overline{\Box}$		No		Ē			
					•				tiated														1	l
Are samples for	human consumption/use?							IN	IITIAL	COOLE	RTEM	IPERA	TURES	°C	<u> </u>		FIN/	AL COO	LER TEN	MPERAT	URES •	c –		1
							R.1					3				1								
	SHIPMENT RELEASE (clie	nt use)	<u> </u>	INITIAL SHIPMENT	TRECEPTION (lab use only)	<u> </u>	-			L	F	INAL	SHIPA	AENT F	RECE	PTIO	N (lab	use on	2		<u> </u>		1
Released by:	Date:	NON 14 (22 116	Received by:	d A	Date:	,	Time	i.		eived				IL	Date:	10	1/ 4	E 00			Time:			1
''		NOV 1-124/14			$\wedge \mathcal{N}$	14/22	🎖	e l		(ce	PH 4	1				NU	V 1	5 20	LL -		12	(OW	\sim	1

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY YELLOW - CLIENT COPY Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agroes with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS										
Work Order	: VA22D0099	Page	: 1 of 3							
Client	: Regional District of Kitimat-Stikine	Laboratory	: Vancouver - Environmental							
Contact	: Nicole Lavoie	Account Manager	: Amber Springer							
Address	: # 300 - 4545 Lazelle Avenue	Address	: 8081 Lougheed Highway							
	Terrace BC Canada V8G 4E1		Burnaby BC Canada V5A 1W9							
Telephone	:	Telephone	: +1 604 253 4188							
Project	: Queensway Sewer	Date Samples Received	: 12-Dec-2022 21:20							
PO	:	Date Analysis Commenced	: 15-Dec-2022							
C-O-C number	:	Issue Date	: 22-Dec-2022 16:34							
Sampler	:									
Site	:									
Quote number	: VA22-RDKS100-001									
No. of samples received	: 1									
No. of samples analysed	: 1									

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Brieanna Allen	Production/Validation Manager	Inorganics, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
mg/L	milligrams per litre
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Effluent			Cl	ient sample ID	Queensway	 	
(Matrix: Water)					Sewer		
			Client samp	ling date / time	12-Dec-2022 10:15	 	
Analyte	CAS Number	Method	LOR	Unit	VA22D0099-001	 	
					Result	 	
Physical Tests							
рН		E108	0.10	pH units	8.12	 	
solids, total suspended [TSS]		E160	3.0	mg/L	3.2	 	
Anions and Nutrients							
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	35.8	 	
nitrogen, total	7727-37-9	E366	0.030	mg/L	39.6	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	5.63	 	
Aggregate Organics							
biochemical oxygen demand [BOD]		E550	2.0	mg/L	5.6	 	
carbonaceous biochemical oxygen demand [CBOD]		E555	2.0	mg/L	5.5	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

ALS Canada Ltd.

QUALITY CONTROL INTERPRETIVE REPORT									
Work Order	: VA22D0099	Page	: 1 of 7						
Client	Regional District of Kitimat-Stikine	Laboratory	: Vancouver - Environmental						
Contact Address	: Nicole Lavoie :# 300 - 4545 Lazelle Avenue Terrace BC Canada V8G 4E1	Account Manager Address	: Amber Springer : 8081 Lougheed Highway Burnaby, British Columbia Canada V5A 1W9						
Telephone	:	Telephone	: +1 604 253 4188						
Project	: Queensway Sewer	Date Samples Received	: 12-Dec-2022 21:20						
PO	:	Issue Date	: 22-Dec-2022 16:34						
C-O-C number	:								
Sampler	:								
Site	:								
Quote number	: VA22-RDKS100-001								
No. of samples received	:1								
No. of samples analysed	:1								

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches) Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, gualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

				Ev	aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding Tin
Method	Sampling Date	Ext	raction / Pr	reparation			Analys	sis	
		Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
		Date	Rec	Actual			Rec	Actual	
E550	12-Dec-2022					15-Dec-2022	3 days	3 days	1
E555	12-Dec-2022					15-Dec-2022	3 days	3 days	1
E298	12-Dec-2022	17-Dec-2022				20-Dec-2022	28 days	8 days	1
5000	40 Dec 0000	47 Dec 0000				00 Dec 0000		10 dayıs	1
E366	12-Dec-2022	17-Dec-2022				22-Dec-2022	28 days	10 days	•
							1		
E372 I I	12 Dec 2022	17 Dec 2022				10 Dec 2022	29 dava	7 dava	1
L372-0	12-Dec-2022	17-Dec-2022				19-Dec-2022	20 uays	7 uays	•
							1		
E108	12-Dec-2022	15-Dec-2022				15-Dec-2022	0.25	0.25	*
2100	12-000-2022	10-000-2022				10-000-2022			EHTR-FM
							1113	1113	
E160	12-Dec-2022					17-Dec-2022	7 davs	5 days	1
2.00						DOO LOLL		5,5	
	Method E550 E555 E298 E366 E372-U E108 E108	Image: style styl	Preparation Date RE550 12-Dec-2022 AE555 12-Dec-2022 AE555 12-Dec-2022 17-Dec-2022 AE298 12-Dec-2022 17-Dec-2022 AE366 12-Dec-2022 17-Dec-2022 AE372-U 12-Dec-2022 17-Dec-2022 AE372-U 12-Dec-2022 17-Dec-2022 AE372-U 12-Dec-2022 17-Dec-2022	Preparation Date Holding Rec E550 12-Dec-2022 E555 12-Dec-2022 E555 12-Dec-2022 E555 12-Dec-2022 17-Dec-2022 E298 12-Dec-2022 17-Dec-2022 E366 12-Dec-2022 17-Dec-2022 E372-U 12-Dec-2022 17-Dec-2022 E108 12-Dec-2022 17-Dec-2022	Method Sampling Date Extraction / Preparation Holding Times Preparation Holding Times Rec Actual E550 12-Dec-2022 E555 12-Dec-2022 E555 12-Dec-2022 17-Dec-2022 E298 12-Dec-2022 17-Dec-2022 E366 12-Dec-2022 17-Dec-2022 E366 12-Dec-2022 17-Dec-2022 E366 12-Dec-2022 17-Dec-2022 E108 12-Dec-2022 17-Dec-2022	MethodSampling DateExtraction / Preparation Preparation DateHolding Times RecEvalE55012-Dec-2022E55512-Dec-2022E29812-Dec-202217-Dec-2022E36612-Dec-202217-Dec-2022E36612-Dec-202217-Dec-2022E36612-Dec-202217-Dec-2022E372-U12-Dec-202217-Dec-2022E10812-Dec-202215-Dec-2022	Method Sampling Date Extraction / Preparation Date Holding Times Rec Eval Analysis Date E550 12-Dec-2022 15-Dec-2022 E555 12-Dec-2022 15-Dec-2022 E555 12-Dec-2022 15-Dec-2022 E298 12-Dec-2022 17-Dec-2022 20-Dec-2022 E366 12-Dec-2022 17-Dec-2022 22-Dec-2022 E372-U 12-Dec-2022 17-Dec-2022 19-Dec-2022 E108 12-Dec-2022 15-Dec-2022 15-Dec-2022	Method Sampling Date Extraction / Preparation Date Eval Rec Analysis Date Holding Holding Rec E550 12-Dec-2022 15-Dec-2022 3 days E555 12-Dec-2022 15-Dec-2022 3 days E555 12-Dec-2022 15-Dec-2022 3 days E298 12-Dec-2022 17-Dec-2022 20-Dec-2022 28 days E366 12-Dec-2022 17-Dec-2022 22-Dec-2022 28 days E372-U 12-Dec-2022 17-Dec-2022 19-Dec-2022 28 days E108 12-Dec-2022 15-Dec-2022 15-Dec-2022 28 days	Preparation Date Holding Times Rec Eval Analysis Date Holding Times Rec Actual E550 12-Dec-2022 Is-Dec-2022 3 days 3 days E555 12-Dec-2022 Is-Dec-2022 3 days 3 days E555 12-Dec-2022 Is-Dec-2022 3 days 3 days E298 12-Dec-2022 17-Dec-2022 Is-Dec-2022 28 days 8 days E366 12-Dec-2022 17-Dec-2022 Is-Dec-2022 28 days 10 days E366 12-Dec-2022 17-Dec-2022 Is-Dec-2022 28 days 10 days E1372-U 12-Dec-2022 17-Dec-2022 Is-Dec-2022 28 days 7 days E108 12-Dec-2022 15-Dec-2022 Is-Dec-2022 0.25 hrs hrs

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluatio	on: × = QC freque	ency outside sp	ecification; 🗸 = 0	QC frequency wit	thin specificatio
Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Ammonia by Fluorescence	E298	782247	1	12	8.3	5.0	✓
Biochemical Oxygen Demand - 5 day	E550	780297	1	18	5.5	5.0	~
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	779407	1	7	14.2	5.0	✓
pH by Meter	E108	779510	1	17	5.8	5.0	~
Total Nitrogen by Colourimetry	E366	782251	1	7	14.2	5.0	~
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	782249	1	9	11.1	5.0	✓
TSS by Gravimetry	E160	779113	1	20	5.0	5.0	~
Laboratory Control Samples (LCS)							
Ammonia by Fluorescence	E298	782247	1	12	8.3	5.0	1
Biochemical Oxygen Demand - 5 day	E550	780297	1	18	5.5	5.0	✓
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	779407	1	7	14.2	5.0	✓
pH by Meter	E108	779510	1	17	5.8	5.0	✓
Total Nitrogen by Colourimetry	E366	782251	1	7	14.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	782249	1	9	11.1	5.0	✓
TSS by Gravimetry	E160	779113	1	20	5.0	5.0	✓
Method Blanks (MB)							
Ammonia by Fluorescence	E298	782247	1	12	8.3	5.0	✓
Biochemical Oxygen Demand - 5 day	E550	780297	1	18	5.5	5.0	✓
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	779407	1	7	14.2	5.0	✓
Total Nitrogen by Colourimetry	E366	782251	1	7	14.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	782249	1	9	11.1	5.0	✓
TSS by Gravimetry	E160	779113	1	20	5.0	5.0	~
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	782247	1	12	8.3	5.0	✓
Total Nitrogen by Colourimetry	E366	782251	1	7	14.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	782249	1	9	11.1	5.0	~

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Vancouver - Environmental Vancouver - Environmental Vancouver - Environmental Private of the field within the recommended 15 minute hold time. TSS by Gravimetry E160 Water APHA 2540 D (mod) Total Suspended Solida (TSS) are determined by fittering a sample through a glass fibte titler, following by drying of the fitter at 104 ± 1°C, with gravimeter do the fitter, following by drying of the fitter at 104 ± 1°C, with gravimeter do the fitter, following by drying of the fitter at 104 ± 1°C, with gravimeter do the fitter, following by drying of the fitter at 104 ± 1°C, with gravimeter do the fitter, following by drying of the fitter at 104 ± 1°C, with gravimeter do the fitter, following by drying of the fitter at 104 ± 1°C, with gravimeter do the fitter, following by drying of the fitter at 104 ± 1°C, with gravimeter do the fitter, following by drying of the fitter at 104 ± 1°C, with gravimeter do the fitter, following by drying of the fitter at 104 ± 1°C, with gravimeter do the fitter following by drying of the fitter at 104 ± 1°C, with gravimeter do the fitter following by drying of the fitter at 104 ± 1°C, with gravimeter analysis methods are available for these types of samples. Armonia by Fluorescence E288 Water APHA 4500-P J (mod) Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample. Total Philosphons by Colourimetry (0.002 E372-U Water APHA 4500-P E (mod). Total Philosphons is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample. Samples are diluted and incubated for a specified time period, after which the oxygen depletion is massured using a discrete oxygen metic.	Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Lyancouver- Environmental Vancouver- Environmental Vancouver- Environmental Pit should be measured in the field within the recommended 15 minute hold time. TSS by Gravimetry E160 Water APHA 2540 D (mod) Total Suspended Solids (TSS) are determined by fittering a sample through a glass fitter Environmental of the fitter following by dying of the fitter at 100 kpread by being on patible time following by dying of the fitter at 100 kpread containing very high dissolved solid content (i.e. seawatars, broach waters) may produce a positive bias by this method. Alternate analysis methods are valuable for the solve price of samples. Ammonia by Fluorescence E298 Water Method Fialab 100, 2018 Ammonia in water is determined by automated continuous flow analysis with membrane afflucion and floorescence detection, after reaction with DPA (other)-pithalialdehydy). This method is approved under US EPA 40 CFR Part 158 (May 2021) Total Nitrogen by Colourimetry E386 Water APHA 4500-P (mod) Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persuffate digestion of the sample. Total Phosphorus by Colourimetry (0.02 mg(L) E372-U Vancouver- Environmental Water APHA 4500-P E (mod). Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persuffate digestion of the sample. Biochemical Oxygen Demand -5 day E550 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time	pH by Meter	E108	Water	APHA 4500-H (mod)	
Environmental Environmental Market interview of the sample service of the sample through a glass filter following by drying of the filter at 104 ± 1°C, with gravinetic measurement of the filter, following by drying of the filter at 104 ± 1°C, with gravinetic measurement of the filter of source are valiable for these types of samples. Armonia by Fluorescence E298 Water Method filaba 100, 2018 Ammonia the samples containing very high dissolved soil content (i.e. seawaters, may produce a positive bis by this method. Alternate analysis brackin waters in a type roduce a positive bis by this method. Alternate analysis brackin waters in a type roduce a positive bis by this method. Alternate analysis from ontaried continuous flow analysis with method are available for these types of samples. Armonia by Fluorescence E298 Water APHA 4500-P (mod) Armonia water is determined by automated continuous flow analysis with method are available for these types of samples. Total Nitrogen by Colourimetry E368 Water APHA 4500-P (mod) Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persuitate digestion of the sample. Total Phosphorus by Colourimetry (0.002 E372-U Water APHA 4500-P E (mod) Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persuitate digestion of the sample. Biochemical Oxygen Demand -5 day E550 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time per					at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
ISS by Gravimetry E 160 Water APHA 2540 D (mod) Total Suppendet Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filter dollowing by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filter dollowing by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filter dollowing by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filter dollowing by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filter dollowing by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filter dollowing by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filter dollowing by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filter dollowing by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filter at 104 ± 1°C, with gravimetric measurement of the filter dollowing by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filter dollowing by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filter dollowing by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filter dollowing by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filter dollowing by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filter dollowing by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filter dollowing by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filter dollowing by drying of the filter at 104 ± 1°C, with gravimetric dollowing by drying of the filter at 104 ± 1°C, with gravimetric measurement and the determined by automaled continuous flow analysis with membrane at 104 at 1°C, with OPA (ortho-phthaladebyde). This method is approved under US EPA 40 CFR Part 138 (May 20		Vancouver -			pH should be measured in the field within the recommended 15 minute hold time.
Name Name Apple Name Riter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high disolved asil content (i.e. seawaters, brackich waters) may produce a positive his by this method. Ammonia by Fluorescence E298 Water Method Fialab 100, 2018 Samples containing very high disolved asil content (i.e. seawaters, brackich waters) may produce a positive his by this method. Alternate analysis methods are available for these types of samples. Ammonia by Fluorescence E398 Water Method Fialab 100, 2018 Apple 4500-P J (mod) Total Nitrogen by Colourimetry E366 Water APHA 4500-P J (mod) Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persultate digestion of the sample. Total Phosphorus by Colourimetry (0.002 E372-U Water APHA 4500-P E (mod). Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persultate digestion of the sample. Biochemical Dxygen Demand - 5 day E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a discrete onsuming oxygen resulting in only carbonaceous oxygen meter. 5 day Vancouver - Environmental APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a disorved oxygen meter. Free chorine is a negative interference in the BOD metho		Environmental			
Vancouver - Environmental Valuer Method Fialab 100, 2018 Ittered solita: Samples containing very high dissolved solid content (i.e. seawaters, methods are available for these types of samples. Ammonia by Fluorescence E298 Water Method Fialab 100, 2018 Ammonia in water is determined by automated confluous flow analysis with membrane diffusion and fluorescence detection, after reaction, with OPA (otherbethaladehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021) Total Nitrogen by Colourimetry E386 Water APHA 4500-P J (mod) Total Phosphorus by Colourimetry (0.002 mg/L) E372-U Water APHA 4500-P E (mod). Total Phosphorus by Colourimetry (0.002 mg/L) E372-U Water APHA 4500-P E (mod). Stochemical Oxygen Demand - 5 day E355 Water APHA 5210 B (mod) Stochemical Oxygen Demand - 5 day E555 Water APHA 5210 B (mod) 5 day Yancouver - Environmental APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a discrete on shups oxygen meter. Stochemical Oxygen Demand - 5 day E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen free chlorine is present in samples. Stochemical Oxygen Demand (Carbonaceous) E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period,	TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
Environmental Environmental brackist watern) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples. Anmonia by Fluorescence E298 Water Method Fiatab 100, 2018 Method Fiatab 100, 2018 Method Fiatab 100, 2018 Method Create types of samples. Total Nitrogen by Colourimetry E366 Water APHA 4500-P J (mod) Total Nitrogen of the sample. Total Nitrogen of the sample. Total Phosphorus by Colourimetry (0.002 E372-U Water APHA 4500-P E (mod). Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample. Total Phosphorus by Colourimetry (0.002 E372-U Water APHA 4500-P E (mod). Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample. Biochemical Oxygen Demand - 5 day E550 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Vancouver - Environmental E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. S day Vancouver - Environmental <td< td=""><td></td><td></td><td></td><td></td><td>filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the</td></td<>					filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the
Animonia by Fluorescence E298 Water Method Fialab 100, 2018 methods are available for these types of samples. Animonia by Fluorescence E298 Water Method Fialab 100, 2018 Ammonia in water is determined by automated continuous flow analysis with membrane insign and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021) Total Nitrogen by Colourimetry E386 Water APHA 4500-P J (mod) Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample. Total Phosphorus by Colourimetry (0.002 E372-U Water APHA 4500-P E (mod). Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample. Biochemical Oxygen Demand - 5 day E550 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is a negative interference in the BOD method; after which the oxygen depletion is measured using a dissolved oxygen meter. Biochemical Oxygen Demand (Carbonaceous) E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time perio		Vancouver -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
Ammonia by Fluorescence E298 Water Method Flalab 100, 2018 Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthaladehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021) Total Nitrogen by Colourimetry E366 Water APHA 4500-P J (mod) Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persultate digestion of the sample. Total Phosphorus by Colourimetry (0.002 E372-U Water APHA 4500-P E (mod). Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persultate digestion of the sample. Vancouver - Environmental E550 Water APHA 4500-P E (mod). Total Phosphorus is determined colourimetrically using a discrete analyzer after heated deglection is measured using a dissolved oxygen meter. Biochemical Oxygen Demand - 5 day E550 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. 5 day Vancouver - Environmental APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. 5 day Vancouver - Environmental APHA 5210 B (mod) Samples are diluted and incubated for a specifie		Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis
Late 2018 diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 36 (May 2021) Total Nitrogen by Colourimetry E366 Water APHA 4500-P J (mod) Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persultate digestion of the sample. Total Phosphorus by Colourimetry (0.002 E372-U Water APHA 4500-P E (mod). Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persultate digestion of the sample. Total Phosphorus by Colourimetry (0.002 E372-U Water APHA 4500-P E (mod). Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persultate digestion of the sample. Biochemical Oxygen Demand - 5 day E550 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Biochemical Oxygen Demand (Carbonaceous) E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Stady Vancouver - Environmental APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Stad					methods are available for these types of samples.
Vancouver - Environmental Vancouver - Environmental This method is approved under US EPA 40 CFR Part 136 (May 2021) Total Nitrogen by Colourimetry E386 Water APHA 4500-P J (mod) Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample. Total Phosphorus by Colourimetry (0.002 E372-U Water APHA 4500-P E (mod). Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample. Biochemical Oxygen Demand - 5 day E550 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Biochemical Oxygen Demand (Carbonaceous) E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. * 5 day Vancouver - Environmental APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. * 5 day Vancouver - Environmental APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. * 5 day Vancouver - Environmental E555 Water APHA 5210 B (mod)	Ammonia by Fluorescence	E298	Water	Method Fialab 100,	Ammonia in water is determined by automated continuous flow analysis with membrane
Environmental Environmental APHA 4500-P J (mod) Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample. Total Phosphorus by Colourimetry (0.002 mg/L) E372-U Water Vancouver - Environmental APHA 4500-P E (mod). Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample. Biochemical Oxygen Demand - 5 day E550 Water Vancouver - Environmental APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Biochemical Oxygen Demand - 5 day E555 Water Vancouver - Environmental APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. 5 day Vancouver - Environmental APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Yancouver - Environmental E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Yancouver - Environmental E555 Water APHA 5210 B (mod) Eree chlorine is a negative interference in the BOD method; please				2018	diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
Environmental International International International Total Nitrogen by Colourimetry E366 Water APHA 4500-P J (mod) Total Nitrogen is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample. Total Phosphorus by Colourimetry (0.002 E372-U Water APHA 4500-P E (mod). Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample. Total Phosphorus by Colourimetry (0.002 E372-U Water APHA 4500-P E (mod). Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample. Biochemical Oxygen Demand - 5 day E550 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a discoved oxygen meter. Vancouver - Environmental Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is measured using a discoved oxygen meter. Stady Vancouver - Environmental APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a discoved oxygen meter. Biochemical Oxygen Demand (Carbonaceous) E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified		Vancouver -			This method is approved under US EPA 40 CFR Part 136 (May 2021)
Line Line Persulfate digestion of the sample. Total Phosphorus by Colourimetry (0.002 E372-U Water APHA 4500-P E (mod). Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample. Biochemical Oxygen Demand - 5 day E550 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a discolved oxygen meter. Biochemical Oxygen Demand - 5 day E550 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a discolved oxygen meter. Biochemical Oxygen Demand (Carbonaceous) E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a discolved oxygen meter. 5 day Vancouver - Environmental APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a discolved oxygen meter. 5 day Vancouver - Environmental Free chlorine is present in samples. Preparation Methods Method / Lab Matrix Preparation for Ammonia EP28 Water Vancouver - Sample preparation for Preserved Nutrients Water Quality Analysis.		Environmental			
Vancouver - Environmental Presulfate digestion of the sample. Total Phosphorus by Colourimetry (0.002 mg/L) E372-U Water APHA 4500-P E (mod). Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample. Biochemical Oxygen Demand - 5 day E550 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a discolved oxygen meter. Biochemical Oxygen Demand - 5 day E550 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a discolved oxygen meter. Biochemical Oxygen Demand (Carbonaceous) E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a discolved oxygen meter. 5 day Vancouver - Environmental APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a discolved oxygen meter. 5 day Vancouver - Environmental APHA 5210 B (mod) Samples to prevent nitrogenous compounds from consuming oxygen resulting in only carbonaceous oxygen demand being reported by this method. Preparation Methods Method / Lab Matrix Method Reference Method Descriptions Preparation for Ammonia EP298 Water Sample preparation for Preserved Nutrient	Total Nitrogen by Colourimetry	E366	Water	APHA 4500-P J (mod)	Total Nitrogen is determined colourimetrically using a discrete analyzer after heated
Vancouver - Environmental Vancouver - Environmental Valuer APHA 4500-P E (mod). Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persuifate digestion of the sample. Total Phosphorus by Colourimetry (0.002 E 372-U Water APHA 4500-P E (mod). Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persuifate digestion of the sample. Biochemical Oxygen Demand - 5 day E550 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Biochemical Oxygen Demand (Carbonaceous) E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. 5 day Vancouver - Environmental Vancouver - Environmental APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. -5 day Vancouver - Environmental Vancouver - Environmental Preparation Methods Free chlorine is present in samples. Preparation Methods Method / Lab Matrix Method Reference Method Descriptions Preparation for Ammonia EP298 Water Sample preparation for Preserved Nutrients Water Quality Analysis.					, , , ,
Total Phosphorus by Colourimetry (0.002 E372-U Water APHA 4500-P E (mod). Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample. mg/L) Vancouver - Environmental E550 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Biochemical Oxygen Demand - 5 day E550 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Biochemical Oxygen Demand (Carbonaceous) E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Starples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Nutrification inhibitor is added to samples. Biochemical Oxygen Demand (Carbonaceous) E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Starple Vancouver - Environmental Vancouver - Environmental Free chlorine is resent in samples. Preparation Methods Method / Lab Matrix Method Refere		Vancouver -			P
Total Phosphorus by Colourimetry (0.002 E372-U Water APHA 4500-P E (mod). Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample. mg/L) Vancouver - Environmental E550 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Biochemical Oxygen Demand - 5 day E550 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Biochemical Oxygen Demand (Carbonaceous) E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Starples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Nutrification inhibitor is added to samples. Biochemical Oxygen Demand (Carbonaceous) E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Starple Vancouver - Environmental Vancouver - Environmental Free chlorine is resent in samples. Preparation Methods Method / Lab Matrix Method Refere		Environmental			
mg/L) Vancouver - Environmental Persulfate digestion of the sample. Biochemical Oxygen Demand - 5 day E550 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Vancouver - Environmental Vancouver - Environmental Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Biochemical Oxygen Demand (Carbonaceous) E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. -5 day Vancouver - Environmental APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. -5 day Vancouver - Environmental Kethod / Lab Method Reference Kethod / Lab Preparation Methods Method / Lab Matrix Method Reference Method Descriptions Preparation for Ammonia EP298 Water Sample preparation for Preserved Nutrients Water Quality Analysis.	Total Phosphorus by Colourimetry (0.002		Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated
Vancouver - Environmental Vancouver - Environmental APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Biochemical Oxygen Demand - 5 day E550 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Biochemical Oxygen Demand (Carbonaceous) E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Biochemical Oxygen Demand (Carbonaceous) E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. * 5 day Vancouver - Environmental APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. * Free chlorine is present in samples. Vancouver - Environmental APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Preparation Methods Method /Lab Matrix Method Reference Method Descriptions Preparation for Ammonia EP298 Water Sample preparation for Preserved Nutrients Water Quality Analysis.		2012 0			
EnvironmentalEnvironmentalControlBiochemical Oxygen Demand - 5 dayE550WaterAPHA 5210 B (mod)Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter.Biochemical Oxygen Demand (Carbonaceous)E555WaterAPHA 5210 B (mod)Samples are diluted and incubated for a specified time period, after which the oxygen free chlorine is present in samples.Biochemical Oxygen Demand (Carbonaceous)E555WaterAPHA 5210 B (mod)Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Nitrification inhibitor is added to samples to preven nitrogenous compounds from consuming oxygen resulting in only carbonaceous oxygen demand being reported by this method.Preparation MethodsMethod / LabMatrixMethod ReferenceMethod DescriptionsPreparation for AmmoniaEP298WaterSample reparation for Preserved Nutrients Water Quality Analysis.	(i)g/_/	Vancouver -			
Biochemical Oxygen Demand - 5 day E550 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Vancouver - Environmental Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples. Biochemical Oxygen Demand (Carbonaceous) E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Nitrification inhibitor is added to samples to prevent nitrogenous compounds from consuming oxygen resulting in only carbonaceous oxygen demand being reported by this method. -5 day Vancouver - Environmental Method / Lab Matrix Method Reference Preparation Methods Method / Lab Matrix Method Reference Method Descriptions Preparation for Ammonia EP298 Water Sample preparation for Preserved Nutrients Water Quality Analysis.					
Vancouver - Environmental Vancouver - Environmental Vater APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Biochemical Oxygen Demand (Carbonaceous) E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Nitrification inhibitor is added to samples to prevent nitrogenous compounds from consuming oxygen resulting in only carbonaceous oxygen demand being reported by this method. Preparation Methods Method / Lab Matrix Method Reference Method Descriptions Preparation for Ammonia EP298 Water Sample preparation for Preserved Nutrients Water Quality Analysis.	Biochemical Oxygen Demand - 5 day		Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period after which the oxygen
Vancouver - EnvironmentalVancouver - EnvironmentalFree chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.Biochemical Oxygen Demand (Carbonaceous)E555WaterAPHA 5210 B (mod)Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Nitrification inhibitor is added to samples to prevent nitrogenous compounds from consuming oxygen resulting in only carbonaceous oxygen demand being reported by this method.Preparation MethodsMethod / LabMatrixMethod ReferenceMethod DescriptionsPreparation for AmmoniaEP298WaterSample preparation for Preserved Nutrients Water Quality Analysis.		2000			
EnvironmentalEnvironmentalFree chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.Biochemical Oxygen Demand (Carbonaceous) - 5 dayE555WaterAPHA 5210 B (mod)Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Nitrification inhibitor is added to samples to prevent nitrogenous compounds from consuming oxygen resulting in only carbonaceous oxygen demand being reported by this method.Preparation MethodsMethod / LabMatrixMethod ReferenceMethod DescriptionsPreparation for AmmoniaEP298WaterSample reparation for Preserved Nutrients Water Quality Analysis.		Vancouver -			depiction is measured using a dissolved oxygen meter.
Biochemical Oxygen Demand (Carbonaceous)E555WaterAPHA 5210 B (mod)Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Nitrification inhibitor is added to samples to prevent nitrogenous compounds from consuming oxygen resulting in only carbonaceous oxygen demand being reported by this method.Preparation MethodsMethod / LabMatrixMethod ReferenceMethod DescriptionsPreparation for AmmoniaEP298WaterSample preparation for Preserved Nutrients Water Quality Analysis.					Free chloring is a negative interference in the ROD method: please advice ALS when
Biochemical Oxygen Demand (Carbonaceous) E555 Water APHA 5210 B (mod) Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Nitrification inhibitor is added to samples to prevent nitrogenous compounds from consuming oxygen resulting in only carbonaceous oxygen demand being reported by this method. Preparation Methods Method / Lab Matrix Method Reference Method Descriptions Preparation for Ammonia EP298 Water Vancouver - Sample preparation for Preserved Nutrients Water Quality Analysis.		Environmentar			
-5 day Vancouver - Environmental Vancouver - Environmental Implete the masured using a dissolved oxygen meter. Nitrification inhibitor is added to samples to prevent nitrogenous compounds from consuming oxygen resulting in only carbonaceous oxygen demand being reported by this method. Preparation Methods Method / Lab Matrix Method Reference Method Descriptions Preparation for Ammonia EP298 Water Sample preparation for Preserved Nutrients Water Quality Analysis.	Rischemical Ovygen Demand (Carbonaceura)	<i>TEEE</i>	Water	APHA 5210 B (mod)	
Vancouver - EnvironmentalVancouver - Environmentalsamples to prevent nitrogenous compounds from consuming oxygen resulting in only carbonaceous oxygen demand being reported by this method.Preparation MethodsMethod / LabMatrixMethod ReferenceMethod DescriptionsPreparation for AmmoniaEP298WaterSample preparation for Preserved Nutrients Water Quality Analysis.		E000	Water		
Environmental Environmental carbonaceous oxygen demand being reported by this method. Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples. Preparation Methods Method / Lab Matrix Method Reference Method Descriptions Preparation for Ammonia EP298 Water Sample preparation for Preserved Nutrients Water Quality Analysis.	- 5 day	Vanaaliivar			
Preparation Methods Method / Lab Matrix Method Reference Method Descriptions Preparation for Ammonia EP298 Water Sample preparation for Preserved Nutrients Water Quality Analysis.					
Preparation Methods Method / Lab Matrix Method Reference Method Descriptions Preparation for Ammonia EP298 Water Sample preparation for Preserved Nutrients Water Quality Analysis.		Environmental			carbonaceous oxygen demand being reported by this method.
Preparation Methods Method / Lab Matrix Method Reference Method Descriptions Preparation for Ammonia EP298 Water Sample preparation for Preserved Nutrients Water Quality Analysis.					Free chloring is a pagetive interference in the DOD methods placed while ALC where
Preparation Methods Method / Lab Matrix Method Reference Method Descriptions Preparation for Ammonia EP298 Water Sample preparation for Preserved Nutrients Water Quality Analysis. Vancouver - Vancouver - Vancouver - Vancouver -					
Preparation for Ammonia EP298 Water Sample preparation for Preserved Nutrients Water Quality Analysis.					free chlorine is present in samples.
Vancouver -	Preparation Methods	Method / Lab	Matrix	Method Reference	
	Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
		Vancouver -			
		Environmental			

Page Work Order	:	7 of 7 VA22D0099
Client	:	Regional District of Kitimat-Stikine
Project	:	Queensway Sewer

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for Total Nitrogen in water	EP366	Water	APHA 4500-P J (mod)	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
	Environmental			
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Vancouver -			
	Environmental			

ALS Canada Ltd.

QUALITY CONTROL REPORT Work Order Page :VA22D0099 : 1 of 6 Client Regional District of Kitimat-Stikine Laboratory : Vancouver - Environmental Account Manager : Amber Springer Contact : Nicole Lavoie Address Address :# 300 - 4545 Lazelle Avenue :8081 Lougheed Highway Terrace BC Canada V8G 4E1 Burnaby, British Columbia Canada V5A 1W9 Telephone Telephone :+1 604 253 4188 Project Date Samples Received :12-Dec-2022 21:20 : Queensway Sewer PO **Date Analysis Commenced** :15-Dec-2022 :----C-O-C number Issue Date 22-Dec-2022 16:34 -----Sampler ----Site · ____ Quote number :VA22-RDKS100-001 No. of samples received :1 No. of samples analysed :1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Brieanna Allen	Production/Validation Manager	Vancouver Inorganics, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water	Jb-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Physical Tests (QC	Lot: 779113)											
FJ2203466-001	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	0	Diff <2x LOR		
Physical Tests (QC	Lot: 779510)											
VA22D0002-003	Anonymous	рН		E108	0.10	pH units	7.30	7.27	0.412%	4%		
Anions and Nutrien	ts (QC Lot: 782247)											
FJ2203463-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0591	0.0609	3.01%	20%		
Anions and Nutrien	ts (QC Lot: 782249)											
KS2204710-005	Anonymous	phosphorus, total	7723-14-0	E372-U	0.200	mg/L	2.43	2.84	15.6%	20%		
Anions and Nutrien	ts (QC Lot: 782251)											
VA22D0099-001	Queensway Sewer	nitrogen, total	7727-37-9	E366	1.50	mg/L	39.6	39.3	0.831%	20%		
Aggregate Organics	s (QC Lot: 779407)											
KS2204674-001	Anonymous	carbonaceous biochemical oxygen demand [CBOD]		E555	2.0	mg/L	4.7	5.1	8.2%	30%		
Aggregate Organics	s (QC Lot: 780297)											
KS2204679-003	Anonymous	biochemical oxygen demand [BOD]		E550	2.0	mg/L	<2.0	<2.0	0.0%	30%		

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 779113)						
solids, total suspended [TSS]		E160	3	mg/L	<3.0	
Anions and Nutrients (QCLot: 782247)						
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 782249)						
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 782251)						
nitrogen, total	7727-37-9	E366	0.03	mg/L	<0.030	
Aggregate Organics (QCLot: 779407)						
carbonaceous biochemical oxygen demand [CBOD]		E555	2	mg/L	<2.0	
Aggregate Organics (QCLot: 780297)						
biochemical oxygen demand [BOD]		E550	2	mg/L	<2.0	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	ub-Matrix: Water				Laboratory Control Sample (LCS) Report						
				Spike	Recovery (%)	Recover	y Limits (%)				
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Physical Tests (QCLot: 779113)											
solids, total suspended [TSS]	E160	3	mg/L	150 mg/L	90.3	85.0	115				
Physical Tests (QCLot: 779510)											
pH	E108		pH units	7 pH units	100	98.0	102				
Anions and Nutrients (QCLot: 782247)											
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	0.2 mg/L	100	85.0	115				
Anions and Nutrients (QCLot: 782249)											
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	0.05 mg/L	90.2	80.0	120				
Anions and Nutrients (QCLot: 782251)											
nitrogen, total	7727-37-9 E366	0.03	mg/L	0.5 mg/L	95.5	75.0	125				
Aggregate Organics (QCLot: 779407)								1			
carbonaceous biochemical oxygen demand [CBOD]	E555	2	mg/L	198 mg/L	103	85.0	115				
Aggregate Organics (QCLot: 780297)											
biochemical oxygen demand [BOD]	E550	2	mg/L	198 mg/L	102	85.0	115				

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water			Matrix Spike (MS) Report							
			Spike Recovery			Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutri	ents (QCLot: 782247)									
FJ2203463-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.100 mg/L	0.1 mg/L	100	75.0	125	
Anions and Nutri	ents (QCLot: 782249)									
KS2204711-001	Anonymous	phosphorus, total	7723-14-0	E372-U	ND mg/L	0.05 mg/L	ND	70.0	130	
Anions and Nutrients (QCLot: 782251)										
VA22D0160-001	Anonymous	nitrogen, total	7727-37-9	E366	ND mg/L	20 mg/L	ND	70.0	130	

Page	:
Work Order	:
Client	:
Project	:

6 of 6 VA22D0099 Regional District of Kitimat-Stikine Queensway Sewer

	Chain of Custody (COC) / Analytical		e inclusione e constructione e constructione e constructione e construction e construction e construction e con Transformatione e construction e construction e construction e construction e construction e construction e cons Transformation e construction e construction e construction e construction e construction e construction e const		-	•	COC Number: 17 -
	Request Form		Affix ALS I		el here		Page
Environmental	Canada Toll Free: 1 800 668 9878			lab use only}		1	
www.alsolobal.com		a. 1					

of

	www.alsglobal.com		and the second						· · · ·														·		
Report To Contact and company name below will appear on the final report			Report Format / Distribution					t Servi	ice Le	vel Be	low -	Contac	t you	r AM to	o confi	irm all	E&P Ţ	TATs (s	surcha	arges r	nay a	pply)			
Company:	Regional District of Kitimat-Stikine	Select Report Format: 🔽 PDF 📝 EXCEL 🗹 EDD (DIGITAL)																							
Contact:	Nicole Lavoie	Quality Control (QC) Report with Report 🛛 YES 🗌 NO					1 4 day [P4-20%]							1 Business day [E1 - 100%]											
Phone:	250-615-6100	Compare Results to Criteria on Report - provide details below if box checked					5 3 day [P3-25%]						Same	Day,	Weel	Neekend or Statutory holiday [E2_200%									
/	Company address below will appear on the final report	Select Distribution: 🗹 EMAIL 📋 MAIL 📑 FAX						/ [P2-					Laboratory opening fees may apply)												
Street:	4545 Lazeile Avenue	Email 1 or Fax	I	Date an	d Time	Requi	red for	all E8	PTATS	н:							•								
City/Province:	Terrace/8C							For tests that can not be performed according to the service level selected, you will be contacted.																	
Postal Code:	VBG4E1	Email 3 pmiller@rdks.bc.ca; jlacroix@rdks.bc.ca								· · ·			Ana	lysis	Reqú	est									
Invoice To	Same as Report To	Invoice Distribution						Indic	ate Filt	ered (F), Pres	erved (F	P) or Fi	Itered a	nd Pres	served	F/P) be	elow				etail			
	Copy of Invoice with Report 🛛 YES 🗋 NO	Select Invoice	Select Invoice Distribution: 🔽 EMAIL 🗌 MAIL 🔲 FAX					Р	Ρ					1				ŀ				provide further deta			
Company:	Regional District of Kitimat-Stikine	Email 1 or Fax_anne-maries@rdks.bc.ca						(бш [,]	and					·			· · ·				Ę			
Contact:	Nicole Lavoie	Email 2 enviro.dept@rdks.bc.ca						ng/L	0.002	Den				• .								def			
	Project Information	Oil and Gas Required Fields (client use)																	12	· •]	- Š				
ALS Account #	# / Quote #: VA22-RDKS100-001	AFE/Cost Center: PO#						tr o	met	Oxygen			Ì.		i							ase p			
Job #:	Queensway Sewer	Major/Minor Code: Routing Code:					8	ime	Colourimetry	E U		· ·			·		. 1				1	leas	ERS 1		
PO / AFE:		Requisitioner:	Requisitioner:					inolo	ŝ	Ē				· .								a a	N.		
LSD:		Location:	Location:					v. Č	(q) s	io:		ŀ		•							Hold	Ę.	E.		
ALS Lab Wor	k Order # (lab use only):	ALS Contact: Sampler:					a (by Fit	rogen (b	noydso	ceous B											δ	is hazaı	R OF C		
ALS Sample #	Sample Identification and/or Coordinates		Date	Time		ê	Ammonia	· Nit	Чd Р	ona			-	•	1						SAMPLES	8	NUMBE		
(lab use only)	(This description will appear on the report)	•	(dd-mmm-yy)	(hh:mm)	Sample Type	TSS	Amr	Total	Total	Carbor	Ha			~		-					SAN	Sarr	รั		
	Queensway Sewer		12-Dec -22	10:15	Effluent	Ŕ	R	R	R	R	R								1	-			3		
			12 100 22				1	· · · · ·	· · ·	-									-				$\neg \neg$		
							<u> </u>							· ·			÷	<u> </u>					$\neg \neg$		
	Environmental Divi	sion –	<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>									<u>·</u>	<u></u>	-+			<u> </u>		
	vancouver			· · · · · · · · · · · · · · · · · · ·	<u></u>	<u> </u>						<u> </u>		l		I.].	1					<u> </u>		
the second second	Work Order Referen	a					Terrace Shipping																		
	VA22D00	99																					1		
							# Coole											/					\square		
						1		±		C	Car	bοι	iys	Α	ir		\square	•		-+					
						· · ·		. "					-		FX			j –	+		- †				
			· · · · ·	<u>-</u>	· · · · · ·			•						-		-			1		÷f				
				· · · · · · · · · · · · · · · · · · ·		ŀ		<u> </u>			<u>, </u>	1		-											
ч					·						L_							· ·							
	Field Blank Telephone : +1 604 253 4188	1				[.	[[ļ		- [f	: 1	[- [
		ria to	add on report by click	ing on the drop-	down list below					SAN	VIPLE	CON	DITIO	N AS	RECE	EIVED	(lab i	use or	ıly)						
	Water (DW) Samples ¹ (clien: use)	(electronic COC only)					Frozen SIF Observations Yes No																		
		wed and Working Water Quality Guidelines (MAY, 2015)					Ice Packs ' Ce Cubes Custody seal intact Yes No																		
	YES 🔽 NO						ling Ini		_																
Are samples for	human consumption/ use?													S C FINAL COOLER TEMPERATURES C											
ים ו	YES 🖉 NO						3.0 2.8 2.5 6											<u> </u>							
	SHIPMENT RELEASE (client use)	INITIAL SHIPMENT RECEPTION (lab use only)					FINAL SHIPMENT RECEPTION (lab use only)																		
Released by:	h Ahiton December 12th 2022 Time:	Received by:					Time: Received by: RJ Date: Dec -12 Time:											12	a l						
Hanna	KPAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	- L		E-LABORATOR	VELLE VELLE	1 1 10	- CLIEN		Pγ		<u> </u>	~			ν	<u>K</u>		12			×.	EDT 14	<u></u>		

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

....